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ABSTRACT

THE ELEMENTS OF DISSERTATION

Perry H. Disdainful
DOCTOR OF PHILOSOPHY

Temple University, January, 2000

Ignatius Arrogant, Mathematics, Chair

Theses have elements. Isn’t that nice?
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CHAPTER 1

SEQUENCES OF WORDS

1.1 Words

Words surround us. Not just in the literal sense of the words on billboards,
road signs, cereal packets, and in books and magazines, but also in a more
abstract sense. Our DNA is defined by a word over the language of nucleotides.
The bar codes on our groceries are words in the computer language of zeroes
and ones. Further, in mathematics there are words that avoid certain patterns,
such as repeating blocks which can be explored purely for their own interest,
and some that have applications in such areas as the study of linear polymer
molecules in chemical physics.

In order to explore the behavior of such a wide range of words we must first
introduce a format by which words are defined, and some basic terminology
that will be used throughout this work. My choice of notation is based on my

frequent reliance on Maple to perform calculations.
Notation 1.1 Let V' be the alphabet over which our language is defined.

E.g. in English V = {a,b,¢,d,e, f,q,h,i,j,k,l,m,n,0,p,q,r,s,t,u,v,w,z,y,z}.
In computing V' = {0, 1}.

Definition 1.1 A word, w, over the alphabet V' is an ordered sequence of

letters from V', w = [wy, wa, ..., wy,] where w; € V for 1 < i <n.



E.g. the English word “alphabet” becomes [a,l, p, h,a,b,e,t].
Notation 1.2 V* is the set of all possible words over the alphabet V.

Definition 1.2 A sub-word of w is any of the (”;’1) possible sub-sequences

(Wi, Witq, ..., w;| where 1 <i<j <n.
Thus [a,l,p], [h,a] and [b, e, t] are all sub-words of [a,,p, h,a,b, e, t].

Notation 1.3 The empty word is considered to be a sub-word of all words

and belongs to V* for every V. It will be denoted ||

Definition 1.3 The length of a word l(w) is the number of letters in the

word, counting multiplicity.

E.g. l(la,l,p, h,a,b,e,t]) =8. Note I[([]) = 0.

One of the main areas of research into words is their limiting behavior.
That is if a, is the number of words in our language of length n we want to
find g := lim,_o0[a,]'/™, if it exists.

Clearly if no constraints are put upon our choice of words and if k is the
number of letters in our alphabet V' then a(n) = k™ and hence p = k. This
leads us to believe our quest for limits will not prove fruitless.

Often it is useful to use the model a,, = n’y". Zinn’s method can be used

to obtain good approximations of this type.

1.2 Avoiding the Bad

Most of the sequences a,, considered in this text are ones whose words avoid
specific sub-words. We consider the sub-words we wish to avoid as the bad
words (or mistakes), and the set of all such words will be denoted B. The set

of all bad words up to length k£ will be denoted Bj.



As an example consider the case of binary square-free words. That is words
over a two letter alphabet that avoid any non-trivial sub-word being repeated
directly after itself. In this case By = {[0,0], [1,1],][0,1,0,1],[1,0,1,0]}.

It should be noted that B and By are always minimal in the sense that no
member of B (or By) is a sub-word of any other member of B(or By). In the
above example note [1,1,1,1] is omitted from B, because it contains [1,1] as
a sub-word.

In fact in this case B = B, and a, = [1,2,2,2,0,0,0,...], which is not
a very interesting sequence. The more interesting case of ternary square-free

words is discussed by Noonan [6].

1.3 Substantive Sequences

Many of the sequences we will be discussing are sub-multiplicative. That
is that a,1m < ana,. In sequences where a,, # 0 we have that log(a,im) <
log(a,) + log(a,,) which shows that the sequence {log(a,)} is subadditive
(Cnem < ¢y + ). This fact can be used to show that the p exists and is
in fact the inf agl/n)

Lemma 1.1 Let {c,} be a subadditive sequence of real numbers. Then the

lim,, ;o < exists and equals inf, >4 .

The above lemma is attributed to Hammersley and Morton (1954).
Proof of Lemma: Let ), = maxi<,<ic,. Then for any given n we can find
j such that n = jk +r with 1 <r < k.

Using the subadditivity of {¢,} we obtain

en < Jep+ o < %Ck‘|‘ck (1.1)
Then we divide both sides by n and take the limsup,,_, ., to obtain

lim sup n < lim sup(i: + ﬁ) Ck (1.2)

n—oo N n—00 k



Finally we take the liminf, ,., and obtain that the limsup < liminf thus
proving the limit exists.
As the limit exists it equals the lim sup and so as this is less than %= for all
k we obtain
Cn Cn

lim — = inf — (1.3)

n—oo N n>1 n

Theorem 1.1 If {a,} is a sequence of positive terms for which an m < anamy,

then p = lim, an% exists. Further p < an%.

Proof: As discussed above a,,, < a,a,, implies that the sequence {loga,}
1

1 . = .
8In = lim,,_ log a; exists and

is subadditive. This means log y = lim,,

log an,

=2 = inf,,> log an% < log an% for all n.And this gives

further log p = inf,,>q

the required results.

1.4 The Naive Approach

At this point we are only considering linear sequences. Later in this Thesis
we will investigate the case of cyclic sequences.

For any given word we define its k—weight at follows:

n—k+1
Wi([wy, wa, ..., wy,]) = S”H zlw; ... Wjyk_1] (1.4)

=1 j=1
For example the 3-weight of the word apple would be

s*zla|z[p*z[l]x]e]z[a, plz[p, p|x|p, {|x]l, €]z[a, p, p)z[p, p, [|z[p, [, €]

So that the coefficient of s will give us the number of words of length
n and when necessary their form. This means are goal becomes to find the
generating function that has all words of length n (or often just the number
of them) that meet our criteria as the coefficient of s".

One method for doing this is to use a matrix, A, to analyze the interaction
between all possible blocks of length k& then by taking (1 — A)~! and adding

all the resulting entries we obtain a generating function for all words over the



chosen alphabet. We then set any blocks that are disallowed equal to zero and
obtain the generating function for the desired set of words.

This method I call the Naive Approach because it produces all possible
words without taking into account the bad words until the very end. For
example if we were to take the English alphabet and look for all words that
did not contain any bad “4-letter” words we would need a matrix that was 26*
by 26* and worse yet need to find the inverse of such a matrix a very slow task,
even for a computer. Thus this approach is only useful in very small cases and

as a check for our clever techniques, like the Goulden-Jackson Method.

1.5 The Goulden-Jackson Method

One method used throughout this dissertation is the Goulden-Jackson
Cluster Method [4]. This method can be used to find the generating func-
tion f(s) = > " a,s". In many cases we can not find f(s) explicitly as we
are looking at infinite sets of mistakes, but we can obtain fi(s) which gives
correct values for a,, when n < k and good over estimates for n > k.

We will discuss briefly this method, for a more in depth explanation see
[4].



CHAPTER 2

BINARY CUBE-FREE
WORDS

2.1 Introduction

Definition 2.1 A word is cube-free if it contains no factors of the form xxx,

where x 1s any non-empty word.

E.g. The cube-free words of length 3 over the alphabet {a, b} are
{la,a,b],|a,b,al,la,b,bl,b,a,a],lb,a,bl[b,b, al}

My Maple package Cubefree (available from
http://www.math.temple.edu/~anne/cubefree.html) can be used to
derive cube-free words on any given alphabet up to the required length. The
number of binary cube-free words of length at most n for 0 < n < 47 are given

below.

2.2 Applying the Goulden-Jackson Method

These results were obtained by applying the Goulden-Jackson Method with

all cubes of length at most 45 as the input mistakes.



2.2.1 The Sequence of Binary Cube-Free Words of length
up to 47

1, 2, 4, 6, 10, 16, 24, 36, 56, 80, 118, 174, 254, 378, 554, 802, 1168, 1716,
2502, 3650, 5324, 7754, 11320, 16502, 24054, 35058, 51144, 74540, 108664,
158372, 230800, 336480, 400458, 714856, 1041910, 1518840, 2213868, 3226896,
4703372, 6855388, 9992596, 14565048, 21229606, 30943516, 45102942, 65741224,
95822908, 139669094

2.2.2 The ‘Connective Constant’

Let a, be the number of cube-free words of length n. Brandenburg [1]

proved that for n > 18
Lemma 2.1 {a,} is sub-multiplicative.

Proof: Given a cube free word of length n + m if we split it into the first
n letters and the last m letters both of these words must be cube-free or the
original word was not. Hence a,1m < apay,.

It is also worth noting that when we adjoin two cube-free words we do not

necessarily obtain a cube-free word so this is not multiplicative.
Theorem 2.1 p = lim,, . a}/ " exists and p = liminf, . a,.

Proof: See 1.1.

2 x 1.080" < 2 x 25 <a, <2x 12517 < 1.315 x 1.522"  (2.1)

Thus 1.080 <y < 1.522
Using the ‘memory-45" analog (i.e. the corresponding sequence that enu-
merates words that avoid cubes 22, with length(z) < 15), that was generated

using the Maple package, up to word-length 300, we find the rigorous upper
bound p < 1.457579200596766, which improves on Brandenburg’s result.



Using Zinn’s method, we also found that, assuming that a, ~ nfu", then
p =~ 1.457, and 6 ~ 0. Hence it is reasonable to conjecture that a, ~ u",

where 4 = lim,, ai/" ~ 1.457.

2.3 Lower-Bounds and the Brinkhuis Method

2.3.1 Lower Bounds for Square-free Ternary Words

Jan Brinkhuis [2] obtained a lower bound for the number of square-free
ternary words in the following way. He found a pair of words, U0,V 0, on
{0,1,2} and from these forms U1, V1 and U2, V2 all with the following prop-
erty. If W is a square-free word over {0, 1,2}, and S(WW) is obtained by
replacing all the 0’s in W with UO or VO, the 1’s with U1 or V1 and the 2’s
with U2 or V2 then S(W) is also square-free.

Lemma 2.2 [If we can find U0, V0,U1,V1,U2,V2 that satisfy the above con-
dition and are of length k then p > =

Proof: As we have two choices of what to substitute for each of the letters of

W
apn > 2" ay, (2.2)
Thus
1 1 1 4
aff > 2% (af)* (2.3)

and taking the limit with respect to n we obtain

p> 20 pik (2.4)
which simplifies to

> 21 (2.5)

Brinkhuis chose words that were palindromes and obtained U1 from U0
by adding 1 mod 3 to each letter of U0 and U2 is obtained from U0 by
adding 2 mod 3 to each letter of U0. Likewise for V1 and V2. He found (by



hand) such a Brinkhuis pair (U0 and V0) of length 24. Giving lower bound of
1> 23 = 1.030595545

Zeilberger and his servant Ekhad [8] removed the palindromic requirement
and computerized the search for good pairs. They thus found a Brinkhuis pair
of length 18, and so improved the lower bound to p > 217 = 1.04162.

In their paper Zeilberger and Ekhad note that the relationship between
U0,U1 and U2 and between V0,V1 and V2 is not necessary and it is with
this comment in mind that I began my adaptation of the Brinkhuis method

to cube-free words.

2.3.2 Lower Bounds for Cube-Free Binary Words

Theorem 2.2 The number of n-letter binary cube-free words is greater than
2n/8,

This result can be obtained as a corollary of Brandenburg’s result, but as
my method is different from his I will give the full details.

The goal is to find binary words U0,U1,V0,V1 of minimal length such
that if we take a cube-free word W over the alphabet {0, 1} and substitute U0
or VO for the zeros and Ul or V1 for the ones the resulting word S(W) will

also be cube-free.

Lemma 2.3 IfU0,V0,U1, and V'1 satisfy the following conditions and if W
is cube-free then S(W) is cube-free.

1) All legitimate triples of U0,V 0,U1, V1 are cube-free

2) None of U0,V0,U1,V1 are non-trivial sub-words of all the possible pairs
of UO,V0,U1,V1

Proof:

Clearly as U0,V 0,U1, and V1 meet condition 1 then if W is cube-free and
of length at most 3 then S(WW) is cube-free.

So if S(W) contains a cube it has length greater than 3. For such a word
to contain a cube the pattern of at least one of U0,V0,U1, and V1 must



10

be repeated elsewhere in S(WW). If every time such a repetition occurs it is
as U0,V0,U1, and V1 respectively then the original word W cannot of been
cube-free (contrary to assumptions). So the only way the repeat can occur is
as a sub-word of a pair of concatenated words, but condition 2 eliminates this

possibility. Therefore S(W) is cube-free whenever W is.

Lemma 2.4 If we can find U0, VO0,U1, V1 that satisfy the above condition
and are of length k then p = lim, a}/" > 2T, Where a,, is the number of

cube-free words of length n.

Proof: As for the lemma 2.2 in the square-free case.

Proof of Theorem: It is easily verified (by hand , or more quickly by
computer) that U0 = [0,1,1,0,0,1,1,0,1],V0 = [0,1,1,0,1,0,0,1,0],U1 =
[1,0,0,1,1,0,0,1,0], and V1 = [1,0,0,1,0,1,1,0, 1] satisfy the conditions of
the lemma. Hence a(n) > 2% ~ 1.09

It should be noted that our words are not palindromic, but U1 and V'1 can
be obtained by switching 1’s and 0’1 and vice-versa in U0 and V0. Removing
this condition does not seem to produce any shorter choices for U0, V0,U1

and V1



CHAPTER 3

TABLE STUFF

11

Below are two tables to illustrating how tables may be placed in documents.

Table 3.1: A small table.

Title

Author

Vector bundles and you.
The Great Gatsby

Unknown
F. Scott Fitzgerald




Table 3.2: A typical table.
| 100,000 Samples from N(0,1) |

No. of
points at
U C and above U
4.0009 -0.5983 6.0000
3.9402 -1.5813 7.0000
3.8931 -1.6662 8.0000
3.8159 -2.4016 9.0000
3.8081 -1.1640 10.0000
3.7955 -0.7658 11.0000
3.7878 -0.5049 12.0000
3.5760 -0.5738 23.0000
3.5664 -0.5083 24.0000
3.5466 -0.5428 25.0000




CHAPTER 4

FIGURE PLACEMENT

Below are some figure placement examples.

Input 1— ¢ Output
0 o0
€1
€2
1 _
1 2 ey

Figure 4.1: A first figure.
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Fx(z)
1_ [
7
1
l /
1
1
—
1 3

Figure 4.2: A second figure.
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