TEMPLE UNIVERSITY Department of Mathematics

Applied Mathematics and Scientific Computing Seminar

Room 617 Wachman Hall

Wednesday, 28 September 2005, 4:00 p.m.

Local Minimizers in Calculus of Variations. Part II

by Tadele A. Mengesha Temple University

Abstract. Consider the variational problem of minimizing the functional

$$I(\mathbf{y}) = \int_{\Omega} W(\nabla \mathbf{y}(\mathbf{x})) d\mathbf{x}$$

where, $\Omega \subset \mathbb{R}^d$ an open bounded set, $W : \mathbb{R}^{m \times d} \to \mathbb{R}$, a continuous function, and $\mathbf{y} \in \mathcal{C}$. Here $\mathcal{C} = {\mathbf{y} \in W^{1,\infty}(\Omega; \mathbb{R}^m) : \mathbf{y}|_{\partial\Omega_1} = \mathbf{y}_0}$ is the set of competing maps for some $\mathbf{y}_0 \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ and $\partial\Omega_1 \subset \partial\Omega$

The notion of local minimizers depends on the topology on C. We will discuss weak and strong local minimizers corresponding to the $W^{1,\infty}$, and L^{∞} topologies on C respectively. The main question in Calculus of Variations is to formulate necessary and sufficient conditions a function **y** must satisfy to be a strong (weak) local minimizer of I. The classical necessary conditions solving Euler-Lagrange equations and nonnegativity of the second variation will be discussed. The notion of quasiconvexity (which coincides with convexity when m = 1 or d = 1) as a necessary condition for strong local minimizers will be introduced, and a sufficiency theorem will be proved.