TEMPLE UNIVERSITY Department of Mathematics

Applied Mathematics and Scientific Computing Seminar

Room 617 Wachman Hall

Wednesday, January 24, 4 p.m.

Ginzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers

by Leonid Berlyand

Department of Mathematics and Materials Research Institute Pennsylvania State University

Let $\Omega \subset \mathbf{R}^2$ be a domain with a hole ω . In the domain $A = \Omega \setminus \omega$ consider a class \mathcal{J} of complex valued maps having degrees 1 and 1 on $\partial\Omega$, $\partial\omega$ respectively.

In a joint work with P. Mironescu we show that if $cap(A) \ge \pi$ (subcritical domain), minimizers of the Ginzburg-Landau energy

$$E_{\kappa}(u) = \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 + \frac{1}{2\kappa^2} (|u|^2 - 1)^2 \right) dx$$

exist for each κ . They are vortexless and converge in $H^1(A)$ to a minimizing S^1 -valued harmonic map as $\kappa \to 0$. When $\operatorname{cap}(A) < \pi$ (supercritical domain), for small κ , we prove that the minimizing sequences/minimizers develop exactly two vortices—a vortex of degree 1 near $\partial\Omega$ and a vortex of degree -1 near $\partial\omega$. It was conjectured that the global minimizers do not exist for small κ .

In a subsequent work with D. Golovaty and V. Rybalko this conjecture was proved. It was shown that, when $\operatorname{cap}(A) < \pi$, there exists a finite threshold value κ_1 of the Ginzburg-Landau parameter such that the minimum of E_{κ} is not attained in \mathcal{J} when $\kappa > \kappa_1$, while it is attained when $\kappa < \kappa_1$. No standard elliptic estimates worked here and our proof is based on an introduction of an auxiliary linear problem which allows for a sufficiently tight explicit energy estimate.