TEMPLE UNIVERSITY

Department of Mathematics

Analysis Seminar

Room 617 Wachman Hall Monday, November 17, 2014, 2:40 p.m.

Aberrant CR Structures

by Howard Jacobowitz

Department of Mathematics Rutgers University, Camden

A CR structure on M^{2n+1} is said to be realizable if it can be identified with the structure induced on some real hypersurface in \mathbb{C}^{n+1} . In this situation, there is a rich set of CR functions. The opposite case is when the only CR functions are the constants. Such a structure is called aberrant.

Theorem 1. The aberrant structures are dense in the set of all CR structures on \mathbb{R}^3 .

In higher dimensions the Levi form becomes important.

Theorem 2. If at a point $p \in M^{2n+1}$ the Levi form has n non-zero eigenvalues and has signature n-2 (or 2-n) then the CR structure may be perturbed so that df(p) = 0 for every function which is CR near p.

The existence of aberrant structures for dim M > 3 is an open question. (An erroneous existence proof was published in 1983.)