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Our Motivation

• Poisson structure (or algebra) is a very active subject of research
in mathematics (and mathematical physics) such as: differential
geometry, Lie groups, quantum groups, non-commutative
geometry, non-commutative algebra and representation theory.

• Co-Poisson structure (or coalgebra) is a dual concept of Poisson
structure in categorial point of view.
It arises also in mathematics and mathematical physics naturally.

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

• The category of connected and simply-connected Lie groups is
equivalent to the category of finite-dimensional Lie algebras.

• O(G ) ∼= U(g)◦, where g is the corresponding Lie algebra of Lie
group G , U(g)◦ is the Hopf dual of the enveloping algebra U(g).

• A Lie group G is a Poisson Lie group if and only if O(G ) is a
Poisson Hopf algebra.

• The category of connected and simply-connected Poisson Lie
groups is equivalent to the category of finite-dimensional Lie
bialgebras.
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• The Lie bialgebra structures on any Lie algebra g is in one-to-one
correspondence with the co-Poisson Hopf structures on U(g).

• In this case, O(G ) ∼= U(g)◦ as Poisson Hopf algebra, where g is
the corresponding Lie bialgebra of Poisson Lie group G .

• To quantize a Lie group or Lie algebra one should equip it with
an extra structure, namely, a Poisson Lie group structure or Lie
bialgebra structure, respectively.

• Therefore co-Poisson structure naturally appears in the theory of
quantum groups and in mathematical physics.
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• Let tn : V⊗n → V⊗n be the map
v1 ⊗ · · · ⊗ vn 7→ vn ⊗ v1 ⊗ · · · ⊗ vn−1.

• Suppose (A, µ, η) is an algebra. [−,−] = µ− µ ◦ t2, i.e.,
[a, b] = ab − ba is the commutator.

• Suppose (C ,∆, ε) is a coalgebra.

∆(c) =
∑

c1 ⊗ c2 and (∆⊗ 1)∆(c) =
∑

c1 ⊗ c2 ⊗ c3.

• Let ∆(2) = (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ : C → C ⊗ C ⊗ C , and
∆′ = ∆− t2 ◦∆ be the cocommutator.
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Poisson algebra

Definition 2.1

An algebra A equipped with a linear map {−,−} : A⊗ A→ A is
called a Poisson algebra if

1 A with {−,−} : A⊗ A→ A is a Lie algebra;

2 {a,−} : A→ A is a derivation with respect to the
multiplication of A for all a ∈ A, that is,
{a, bc} = {a, b}c + b{a, c} for all b, c ∈ A.
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Poisson algebra

Definition 2.2

An algebra (A, µ, η) equipped with a linear map p : A⊗ A→ A is
called a Poisson algebra if

1 A with p : A⊗ A→ A is a Lie algebra, i.e.,

p ◦ (1 + t2) = 0, (skew-symmetric)

p ◦ (p ⊗ 1) ◦ (1 + t3 + t2
3 ) = 0; (Jacobi identity)

2 p(1⊗ µ) = µ(p ⊗ 1)− µ(1⊗ p)t2
3 . (Leibnitz rule)

Remark 2.3

We don’t assume that A is commutative here.
The following is a result of Farkas and Letzter [FL, Theorem 1.2].
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Proposition 2.4

Suppose that A is a prime Poisson algebra with {A,A} 6= 0 and
[A,A] 6= 0. Then, for any a, b ∈ A,

1 the following map is a bimodule isomorphism
fa,b : A[a, b]A→ A{a, b}A, x [a, b]y 7→ x{a, b}y.

2 In the Martindale ring of quotients of A, {x , y} = α[x , y ]
where α is the element represented by any fa,b 6= 0.

It follows that there is no nontrivial Poisson algebra structure on
any simple algebras such as An(k) and Mn(k).
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co-Poisson coalgebra

Definition 2.5

A coalgebra (C ,∆, ε) equipped with a linear map q : C → C ⊗ C
is called a co-Poisson coalgebra if

1 C with q : C → C ⊗ C is a Lie coalgebra, i.e.,

(1 + t2) ◦ q = 0, (skew-symmetric)

(1 + t3 + t2
3 ) ◦ (q ⊗ 1) ◦ q = 0; (co-Jacobi identity)

2 (1⊗∆)q = (q ⊗ 1)∆− t3(1⊗ q)∆. (co-Leibnitz rule)

The cocommutator ∆′ gives a co-Poisson coalgebra structure on
any coalgebra (C ,∆, ε).

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Poisson algebra
co-Poisson coalgebra
Poisson Hopf algebra
co-Poisson Hopf algebra

In a co-Poisson coalgebra (C , q), we use the sigma notation

q(c) =
∑

c(1) ⊗ c(2) and,

(q ⊗ 1)q(c) =
∑

c(1) ⊗ c(2) ⊗ c(3),

where
∑

is also often omitted in the computations.

Then,

(1⊗q)q(c) = (1⊗q)(−c(2)⊗c(1)) = −c(3)⊗c(1)⊗c(2) = c(3)⊗c(2)⊗c(1).
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Remark 2.6

By using the sigma notation, the co-Leibnitz rule reads as

c(1) ⊗ c(2)1 ⊗ c(2)2 = c1(1) ⊗ c1(2) ⊗ c2 − c2(2) ⊗ c1 ⊗ c2(1),

for all c ∈ C.

It is equivalent to

c(1)1 ⊗ c(1)2 ⊗ c(2) = c1 ⊗ c2(1) ⊗ c2(2) − c1(2) ⊗ c2 ⊗ c1(1),

i.e.,

(∆⊗ 1)q = (1⊗ q)∆− t2
3 (q ⊗ 1)∆ (co-Leibnitz rule)
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Remark 2.7

If C is cocommutative, then the co-Leibnitz rule is equivalent to

(∆⊗ 1)q = (1− t3)(1⊗ q)∆ (co-Leibnitz rule)

There is no non-trivial co-Poisson coalgebra structure on any group
algebra k[G ] (By checking the co-Leibniz rule.)
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Dual to {a, 1} = 0 (because {a,−} is a derivation), that is,
p(1⊗ η) = 0 in a Poisson algebra.

Proposition 2.8

Let (C ,∆, ε, q) be a co-Poisson coalgebra. Then
(ε⊗ 1) ◦ q = (1⊗ ε) ◦ q = 0, i.e., ε(h(1))h(2) = h(1)ε(h(2)) = 0.
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Poisson Hopf algebra

Definition 2.9

A Hopf algebra (H, µ, η; ∆, ε; S) with a linear map
{−,−} : H ⊗ H → H is called a Poisson Hopf algebra if

1 (H, {−,−}) is a Poisson algebra;

2 The structures are compatible: for all a, b ∈ H,

∆ ({a, b}) =
∑
{a1, b1} ⊗ a2b2 +

∑
a1b1 ⊗ {a2, b2} (2.1)

.
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Let A and B be two Poisson algebras. An algebra morphism
f : A→ B is a Poisson algebra morphism if fpA = pB(f ⊗ f ),
that is, f ({a, b}A) = {f (a), f (b)}B for all a, b ∈ A.

Remark 2.10

Let A and B be two commutative Poisson algebra. Then there is a
Poisson structure on A⊗ B given by

{a⊗ b, a′ ⊗ b′} = {a, a′} ⊗ bb′ + aa′ ⊗ {b, b′}

for all a, a′ ∈ A and b, b′ ∈ B.

If H is commutative, then the cpmpatible condition (2.1) in
Definition 2.9 means that ∆ : H → H ⊗ H is a Poisson algebra
morphism.
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Proposition 2.11 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a Poisson Hopf algebra. Then,

1 the counit ε : H → k is a Poisson algebra morphism.

2 If H is commutative, then ∆ : H → H ⊗ H is a Poisson
algebra morphism.

3 If H is commutative, then the antipode S : H → H is a
Poisson algebra anti-morphism.
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Proposition 2.12

Let g be a non-abelian Lie algebra over a field of characteristic
6= 2. Then there is no nontrivial Poisson Hopf structure on U(g).

Proposition 2.13

There is no nontrivial Poisson Hopf structure on any group algebra
k(G ).
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co-Poisson Hopf algebra

Definition 2.14

A Hopf algebra (H, µ, η; ∆, ε; S) equipped with a linear map
q : H → H ⊗ H is called a co-Poisson Hopf algebra if

1 H with q : H → H ⊗ H is a co-Poisson coalgebra.

2 q is a ∆-derivation, i.e., for all a, b ∈ H,

q(ab) = q(a)∆(b) + ∆(a)q(b) (2.2)

.
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Let C and D be two co-Poisson coalgebras. A coalgebra morphism
g : C → D is called a co-Poisson coalgebra morphism if
(g ⊗ g)qC = qDg .

Remark 2.15

Let C and D be two cocommutative co-Poisson coalgebras. Then
C ⊗ D has a co-Poisson structure qC⊗D being defined as

C ⊗ D
(1⊗τ⊗1)(qC⊗∆D+∆C⊗qD)−−−−−−−−−−−−−−−−−→ C ⊗ D ⊗ C ⊗ D, that is,

qC⊗D(c ⊗ d) = c(1) ⊗ d1 ⊗ c(2) ⊗ d2 + c1 ⊗ d(1) ⊗ c2 ⊗ d(2).

Hence (2.2) in Definition 2.14 is equivalent to say µ : H ⊗ H → H
is a co-Poisson coalgebra morphism.
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Proposition 2.16

Let (H, µ, η; ∆, ε;S , q) be a co-Poisson Hopf algebra. Then

1 The unit η is a co-Poisson coalgebra morphism.

2 If H is cocommutative, then µ : H ⊗ H → H is a co-Poisson
coalgebra morphism.

3 If H is cocommutative, then S is a co-Poisson coalgebra
anti-morphism.
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Example 2.17

Let H4 = k〈1, g , x , gx | g2 = 1, x2 = 0, xg = −gx〉 be the
4-dimensional Sweedler’s Hopf algebra with char k 6= 2.

1 Every Poisson algebra structure on H4 is given by
{g , x} = λx + µgx for some λ, µ ∈ k.

2 There is no nontrivial Poisson Hopf algebra structure on H4.

3 Every co-Poisson structure on H4 is given by q(1) = q(g) = 0,
q(x) = α∆′(x), q(gx) = β∆′(gx) for some α, β ∈ k.

4 There is no nontrivial co-Poisson Hopf algebra structure on
H4.
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Proposition 3.1

Let C be a coalgebra, q : C → C ⊗ C be a linear map. Then,
(C , q) is a co-Poisson coalgebra ⇔ C ∗ with q∗ : C ∗ ⊗ C ∗ → C ∗ is
a Poisson algebra.

If g : C → D is a co-Poisson coalgebra morphism, then
g∗ : D∗ → C ∗ is a Poisson algebra morphism.
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Recall for an algebra A,
A◦ = {f ∈ A∗ | ker f contains a cofinite (left/right) ideal I of A}.

Proposition 3.2

Let A be a Poisson algebra. If A is a left or right noetherian, then
A◦ is a co-Poisson coalgebra.

Example 3.3

Let A = k[x1, x2, · · · , xn, · · · ] be a polynomial algebra with
variables {xi | i ≥ 1}. Let p(xi ⊗ xj) = {xi , xj} = 1 for all i < j .
Then p gives a Poisson algebra structure on A. Let
ε : A→ k, xi 7→ 0 be the augmentation map. Then ε ∈ A◦, but
p∗(ε) = εp /∈ A◦ ⊗ A◦ ∼= (A⊗ A)◦.
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Theorem 3.4 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a left or right noetherian Poisson Hopf algebra. Then H◦

is a co-Poisson Hopf algebra.

Theorem 3.4 is stated in [KS, Proposition 3.1.5] without
noetherian hypothesis. Without this hypothesis, it is not true as
showed in the following example.
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Example 3.5

Let A = k[x1, x2, · · · ] with the Poisson Hopf algebra structure by
letting

{x1, xi} = 0 for all i ≥ 2,

for 1 < i < j ∈ N,

{xi , xj} =

{
x1, j = i + 1,

0, otherwise.

Then {−,−}∗(A◦) * A◦ ⊗ A◦, thus {−,−}∗ is not a co-Poisson
Hopf structure on A◦.
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Theorem 3.6 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a co-Poisson Hopf algebra. Then the Hopf dual H◦ is a
Poisson Hopf algebra.

Oh and Park prove that the Hopf dual H◦ of a co-Poisson Hopf
algebra H is a Poisson Hopf algebra when H is an almost
normalizing extension over k, suggested by the U(g) case.

This is true in general. A complete proof is given in [LW] and [Oh]
in 2015.
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Co-Poisson structures on k[x1, · · · , xd ]

Let g = kx1 ⊕ kx2 ⊕ · · · ⊕ kxd be the d-dimensional abelian Lie
algebra. Then A = U(g) = k[x1, · · · , xd ] is a Hopf algebra. Note
that g = P(A).
Let H(A) be the standard k-basis of A which contains all monic
monomials.
In the following, for a ∈ A, ∆(a) =

∑
a1 ⊗ a2 is always assumed to

be the expression by the standard k-basis of k[x1, x2, · · · , xd ].

Denote I = ⊕1≤i<j≤dk(xi ⊗ xj − xj ⊗ xi ).

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Co-Poisson coalgebra structure on A
Poisson Hopf algebra structure on A
Co-Poisson Hopf algebra structure on A

Lemma 4.1

Let C be a coalgebra, X ∈ C ⊗ C. Then

X ∈ I ⇔ (1 + t2)X = 0 and (∆⊗ 1)(X ) = (1− t3)(1⊗ X ).

Lemma 4.2

Let B be a bialgebra. If X ∈ B ⊗ B is skew-symmetric, then so is
X∆(x) for any x ∈ P(B).

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Co-Poisson coalgebra structure on A
Poisson Hopf algebra structure on A
Co-Poisson Hopf algebra structure on A

Theorem 4.3 (Reciprocity law)

Let q : A→ A⊗ A and I : A→ A⊗ A be two linear maps. Then

I (a) = (−1)|a2|q(a1)∆(a2) for all a ∈ A

m
q(a) = I (a1)∆(a2) for all a ∈ A.

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Co-Poisson coalgebra structure on A
Poisson Hopf algebra structure on A
Co-Poisson Hopf algebra structure on A

Theorem 4.4

A linear map q : A→ A⊗ A gives a co-Poisson coalgebra structure
on A if and only if there is a linear map I : A→ A⊗ A such that,

1 The image of I is contained in I.

2 q(a) = I (a1)∆(a2) for all a ∈ A.

3 The co-Jacobi identity holds for q.
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Theorem 4.5 (Continued)

In this case, we may assume that, for any a ∈ H(A),

I (a) =
∑

1≤i ,j≤d
λijaxi ⊗ xj ∈ I

with (λija )d×d ∈ Md(k) skew-symmetric. Then the co-Jacobi
identity holds for q if and only if for all 1 ≤ i < j < k ≤ d and
a ∈ A,

d∑
s=1

(
λska1

λijxsa2
+ λsia1

λjkxsa2
+ λsja1

λkixsa2

)
= 0.
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Proposition 4.6

Let A = k[x , y ]. Then there is an one-to-one correspondence
between the co-Poisson structures q on A and the linear maps
I : A→ I = k(x ⊗ y − y ⊗ x), given by

(I : A→ I ⊆ A⊗ A) 7→ (q : A→ A⊗ A, a 7→ I (a1)∆(a2)), and

(q : A→ A⊗ A) 7→ (I : A→ A⊗ A, a 7→ (−1)|a2|q(a1)∆(a2)).
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This is dual to [CAP, Proposition 1.8] in some sense.

Proposition 4.7

Any Poisson algebra structure on A = k[x1, · · · , xd ] is given by
{xi , xj} = fij where {fij}d×d is a skew-symmetric matrix over A
such that for all 1 ≤ i < j < k ≤ d,

d∑
l=1

(
flk
∂fij
∂xl

+ fli
∂fjk
∂xl

+ flj
∂fki
∂xl

)
= 0. (4.1)
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Proposition 4.8

Any Poisson Hopf structure on A = k[x1, · · · , xd ] is given by

{xi , xj} =
d∑

l=1

λlijxl (1 ≤ i , j ≤ d),

where λlij = −λlji , subject to the relations, for any
1 ≤ i < j < k ≤ d and any 1 ≤ s ≤ d,

n∑
l=1

(
λlijλ

s
lk + λljkλ

s
li + λlkiλ

s
lj

)
= 0.
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Theorem 4.9

A linear map q : A→ A⊗ A gives a co-Poisson Hopf structure on
A if and only if there exists a linear map I : A→ I, such that for
any a ∈ A,

1 I (a) = 0 if a 6= xi (1 ≤ i ≤ d) .

2 q(a) = I (a1)∆(a2).

3 the co-Jacobi identity holds.
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Theorem 4.10

Any co-Poisson Hopf structure q on A is given by

q(xs) =
∑

1≤i ,j≤d
λijs xi ⊗ xj (1 ≤ s ≤ d),

with λijs = −λjis , subject to the relations, for any
0 ≤ i < j < k ≤ d and 1 ≤ s ≤ d,

d∑
l=1

(
λlks λ

ij
l + λlis λ

jk
l + λljs λ

ki
l

)
= 0.

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Co-Poisson coalgebra structure on A
Poisson Hopf algebra structure on A
Co-Poisson Hopf algebra structure on A

Example 4.11

Let A = k[x , y ]. Then there is an one-to-one correspondence
between the co-Poisson Hopf structures q on A and
(Ix , Iy ) ∈ I × I, given by

q 7→ (q(x), q(y)), and

(Ix , Iy ) 7→ q : xnym 7→ nIx∆(xn−1ym) + mIy∆(xnym−1).
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Theorem 4.12

Suppose char k = 0. Let Ã = k[[x1, x2, · · · , xd ]] be the algebra of
formal power series and A = k[x1, · · · , xd ]. Then there is an
one-to-one corresponding between Poisson algebra structures on Ã
and co-Poisson coalgebra structures on A.

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras



Motivation
Poisson structures and copoisson structures

Duality between Poisson and co-Poisson structures
(Co-) Poisson structures on k[x1, · · · , xd ]

Co-Poisson coalgebra structure on A
Poisson Hopf algebra structure on A
Co-Poisson Hopf algebra structure on A

Theorem 4.13

There is a one-to-one corresponding between Poisson Hopf
structures on A and co-Poisson Hopf structures on A. More
precisely, assume

{xi , xj} = λij1x1 + · · ·+ λijdxd

defines a Poisson Hopf structure on A. Let

I (xs) =
∑

1≤i ,j≤d
λijs xi ⊗ xj

for 1 ≤ s ≤ d and I (a) = 0 for all other a ∈ H(A). Then
q(a) = I (a1)∆(a2) defines a co-Poisson Hopf structure on A.
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Thank You!
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