Co-Poisson coalgebras and (co-)Poisson Hopf algebras

Q. -S. Wu

School of Mathematical Sciences, Fudan University Joint with Qi LOU

Talk at the Conference in honor of Ellen and Martin Temple University, Philadelphia, July 27, 2017

イロト イポト イラト イラ

Outline

Motivation

- 2 Poisson structures and copoisson structures
 - Poisson algebra
 - co-Poisson coalgebra
 - Poisson Hopf algebra
 - co-Poisson Hopf algebra
- 3 Duality between Poisson and co-Poisson structures
- (Co-) Poisson structures on $k[x_1, \cdots, x_d]$
 - Co-Poisson coalgebra structure on A
 - Poisson Hopf algebra structure on A
 - Co-Poisson Hopf algebra structure on A

Motivation

Poisson structures and copoisson structures Duality between Poisson and co-Poisson structures (Co-) Poisson structures on $k[x_1, \cdots, x_d]$

Our Motivation

• Poisson structure (or algebra) is a very active subject of research in mathematics (and mathematical physics) such as: differential geometry, Lie groups, quantum groups, non-commutative geometry, non-commutative algebra and representation theory.

• Co-Poisson structure (or coalgebra) is a dual concept of Poisson structure in categorial point of view. It arises also in mathematics and mathematical physics naturally.

イロト イポト イラト イラト

• The category of connected and simply-connected Lie groups is equivalent to the category of finite-dimensional Lie algebras.

• $\mathcal{O}(G) \cong U(\mathfrak{g})^{\circ}$, where \mathfrak{g} is the corresponding Lie algebra of Lie group G, $U(\mathfrak{g})^{\circ}$ is the Hopf dual of the enveloping algebra $U(\mathfrak{g})$.

• A Lie group G is a **Poisson Lie group** if and only if $\mathcal{O}(G)$ is a Poisson Hopf algebra.

• The category of connected and simply-connected Poisson Lie groups is equivalent to the category of finite-dimensional Lie bialgebras.

• The Lie bialgebra structures on any Lie algebra \mathfrak{g} is in one-to-one correspondence with the co-Poisson Hopf structures on $U(\mathfrak{g})$.

• In this case, $\mathcal{O}(G) \cong U(\mathfrak{g})^{\circ}$ as Poisson Hopf algebra, where \mathfrak{g} is the corresponding Lie bialgebra of Poisson Lie group G.

• To quantize a Lie group or Lie algebra one should equip it with an extra structure, namely, a Poisson Lie group structure or Lie bialgebra structure, respectively.

• Therefore co-Poisson structure naturally appears in the theory of quantum groups and in mathematical physics.

• Let
$$t_n: V^{\otimes n} \to V^{\otimes n}$$
 be the map $v_1 \otimes \cdots \otimes v_n \mapsto v_n \otimes v_1 \otimes \cdots \otimes v_{n-1}$.

• Suppose
$$(A, \mu, \eta)$$
 is an algebra. $[-, -] = \mu - \mu \circ t_2$, i.e., $[a, b] = ab - ba$ is the commutator.

• Suppose
$$(C, \Delta, \varepsilon)$$
 is a coalgebra.

$$\Delta(c) = \sum c_1 \otimes c_2 \, ext{ and } (\Delta \otimes 1) \Delta(c) = \sum c_1 \otimes c_2 \otimes c_3.$$

• Let $\Delta^{(2)} = (\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta : C \to C \otimes C \otimes C$, and $\Delta' = \Delta - t_2 \circ \Delta$ be the cocommutator.

イロト イポト イヨト イヨト

э

Poisson algebra

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Definition 2.1

An algebra A equipped with a linear map $\{-,-\}$: $A \otimes A \rightarrow A$ is called a **Poisson algebra** if

- A with $\{-,-\}$: $A \otimes A \rightarrow A$ is a Lie algebra;
- {a, -}: A → A is a derivation with respect to the multiplication of A for all a ∈ A, that is,
 {a, bc} = {a, b}c + b{a, c} for all b, c ∈ A.

Poisson algebra

Definition 2.2

An algebra (A, μ, η) equipped with a linear map $p : A \otimes A \rightarrow A$ is called a **Poisson algebra** if

Poisson algebra

1 A with $p: A \otimes A \rightarrow A$ is a Lie algebra, i.e.,

$$p \circ (1 + t_2) = 0,$$
 (skew-symmetric)
 $p \circ (p \otimes 1) \circ (1 + t_3 + t_3^2) = 0;$ (Jacobi identity)

$$P(1 \otimes \mu) = \mu(p \otimes 1) - \mu(1 \otimes p)t_3^2.$$
 (Leibnitz rule)

Remark 2.3

We don't assume that A is commutative here. The following is a result of Farkas and Letzter [FL, Theorem 1.2].

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Proposition 2.4

Suppose that A is a prime Poisson algebra with $\{A, A\} \neq 0$ and $[A, A] \neq 0$. Then, for any $a, b \in A$,

- the following map is a bimodule isomorphism
 f_{a,b}: A[a, b]A → A{a, b}A, x[a, b]y ↦ x{a, b}y.
- 2 In the Martindale ring of quotients of A, $\{x, y\} = \alpha[x, y]$ where α is the element represented by any $f_{a,b} \neq 0$.

It follows that there is no nontrivial Poisson algebra structure on any simple algebras such as $A_n(k)$ and $M_n(k)$.

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

co-Poisson coalgebra

Definition 2.5

A coalgebra (C, Δ, ε) equipped with a linear map $q : C \to C \otimes C$ is called a **co-Poisson coalgebra** if

 $(1+t_2) \circ q = 0, \qquad (skew-symmetric)$ $(1+t_3+t_3^2) \circ (q \otimes 1) \circ q = 0; \qquad (co-Jacobi \ identity)$

 $(1 \otimes \Delta)q = (q \otimes 1)\Delta - t_3(1 \otimes q)\Delta. \quad (co-Leibnitz \ rule)$

The cocommutator Δ' gives a co-Poisson coalgebra structure on any coalgebra (C, Δ, ε) .

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

In a co-Poisson coalgebra (C, q), we use the sigma notation

$$q(c) = \sum c_{(1)} \otimes c_{(2)}$$
 and,

$$(q\otimes 1)q(c)=\sum c_{(1)}\otimes c_{(2)}\otimes c_{(3)},$$

where \sum is also often omitted in the computations.

Then,

$$(1 \otimes q)q(c) = (1 \otimes q)(-c_{(2)} \otimes c_{(1)}) = -c_{(3)} \otimes c_{(1)} \otimes c_{(2)} = c_{(3)} \otimes c_{(2)} \otimes c_{(1)}$$

イロト イボト イヨト イヨト

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Remark 2.6

By using the sigma notation, the co-Leibnitz rule reads as

 $c_{(1)} \otimes c_{(2)1} \otimes c_{(2)2} = c_{1(1)} \otimes c_{1(2)} \otimes c_2 - c_{2(2)} \otimes c_1 \otimes c_{2(1)},$

for all $c \in C$.

It is equivalent to

$$c_{(1)1} \otimes c_{(1)2} \otimes c_{(2)} = c_1 \otimes c_{2(1)} \otimes c_{2(2)} - c_{1(2)} \otimes c_2 \otimes c_{1(1)},$$

i.e.,

$$(\Delta \otimes 1)q = (1 \otimes q)\Delta - t_3^2(q \otimes 1)\Delta$$
 (co-Leibnitz rule)

< ロ > < 同 > < 三 > < 三 >

э

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Remark 2.7

If C is cocommutative, then the co-Leibnitz rule is equivalent to

$$(\Delta \otimes 1)q = (1 - t_3)(1 \otimes q)\Delta$$
 (co-Leibnitz rule)

There is no non-trivial co-Poisson coalgebra structure on any group algebra k[G] (By checking the co-Leibniz rule.)

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Dual to $\{a, 1\} = 0$ (because $\{a, -\}$ is a derivation), that is, $p(1 \otimes \eta) = 0$ in a Poisson algebra.

Proposition 2.8

Let $(C, \Delta, \varepsilon, q)$ be a co-Poisson coalgebra. Then $(\varepsilon \otimes 1) \circ q = (1 \otimes \varepsilon) \circ q = 0$, i.e., $\varepsilon(h_{(1)})h_{(2)} = h_{(1)}\varepsilon(h_{(2)}) = 0$.

Poisson algebra co-Poisson coalgebra **Poisson Hopf algebra** co-Poisson Hopf algebra

Poisson Hopf algebra

Definition 2.9

A Hopf algebra $(H, \mu, \eta; \Delta, \varepsilon; S)$ with a linear map $\{-, -\} : H \otimes H \rightarrow H$ is called a **Poisson Hopf algebra** if

- $(H, \{-, -\})$ is a Poisson algebra;
- 2 The structures are compatible: for all $a, b \in H$,

$$\Delta(\{a,b\}) = \sum\{a_1,b_1\} \otimes a_2b_2 + \sum a_1b_1 \otimes \{a_2,b_2\} \quad (2.1)$$

Poisson algebra co-Poisson coalgebra **Poisson Hopf algebra** co-Poisson Hopf algebra

Let A and B be two Poisson algebras. An algebra morphism $f : A \to B$ is a **Poisson algebra morphism** if $fp_A = p_B(f \otimes f)$, that is, $f(\{a, b\}_A) = \{f(a), f(b)\}_B$ for all $a, b \in A$.

Remark 2.10

Let A and B be two commutative Poisson algebra. Then there is a Poisson structure on $A \otimes B$ given by

$$\{a \otimes b, a' \otimes b'\} = \{a, a'\} \otimes bb' + aa' \otimes \{b, b'\}$$

for all $a, a' \in A$ and $b, b' \in B$.

If *H* is commutative, then the cpmpatible condition (2.1) in Definition 2.9 means that $\Delta : H \to H \otimes H$ is a Poisson algebra morphism.

Poisson algebra co-Poisson coalgebra **Poisson Hopf algebra** co-Poisson Hopf algebra

Proposition 2.11 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a Poisson Hopf algebra. Then,

- **1** the counit ε : $H \rightarrow k$ is a Poisson algebra morphism.
- ② If H is commutative, then Δ : H → H \otimes H is a Poisson algebra morphism.
- If H is commutative, then the antipode $S : H \rightarrow H$ is a Poisson algebra anti-morphism.

Poisson algebra co-Poisson coalgebra **Poisson Hopf algebra** co-Poisson Hopf algebra

Proposition 2.12

Let \mathfrak{g} be a non-abelian Lie algebra over a field of characteristic $\neq 2$. Then there is no nontrivial Poisson Hopf structure on $U(\mathfrak{g})$.

Proposition 2.13

There is no nontrivial Poisson Hopf structure on any group algebra k(G).

(日)

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

co-Poisson Hopf algebra

Definition 2.14

A Hopf algebra $(H, \mu, \eta; \Delta, \varepsilon; S)$ equipped with a linear map $q: H \to H \otimes H$ is called a **co-Poisson Hopf algebra** if

- **1** H with $q: H \rightarrow H \otimes H$ is a co-Poisson coalgebra.
- **2** q is a Δ -derivation, i.e., for all $a, b \in H$,

$$q(ab) = q(a)\Delta(b) + \Delta(a)q(b)$$
(2.2)

くロ と く 同 と く ヨ と 一

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Let *C* and *D* be two co-Poisson coalgebras. A coalgebra morphism $g: C \to D$ is called a **co-Poisson coalgebra morphism** if $(g \otimes g)q_C = q_Dg$.

Remark 2.15

Let C and D be two cocommutative co-Poisson coalgebras. Then $C \otimes D$ has a co-Poisson structure $q_{C \otimes D}$ being defined as

$$C \otimes D \xrightarrow{(1 \otimes \tau \otimes 1)(q_C \otimes \Delta_D + \Delta_C \otimes q_D)} C \otimes D \otimes C \otimes D, \text{ that is,}$$

 $q_{C\otimes D}(c\otimes d)=c_{(1)}\otimes d_1\otimes c_{(2)}\otimes d_2+c_1\otimes d_{(1)}\otimes c_2\otimes d_{(2)}.$

Hence (2.2) in Definition 2.14 is equivalent to say $\mu : H \otimes H \to H$ is a co-Poisson coalgebra morphism.

イロト イボト イヨト イヨト

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Proposition 2.16

- Let $(H, \mu, \eta; \Delta, \varepsilon; S, q)$ be a co-Poisson Hopf algebra. Then
 - The unit η is a co-Poisson coalgebra morphism.
 - **2** If H is cocommutative, then $\mu : H \otimes H \rightarrow H$ is a co-Poisson coalgebra morphism.
 - If H is cocommutative, then S is a co-Poisson coalgebra anti-morphism.

(日)

Poisson algebra co-Poisson coalgebra Poisson Hopf algebra co-Poisson Hopf algebra

Example 2.17

Let $H_4 = k \langle 1, g, x, gx | g^2 = 1, x^2 = 0, xg = -gx \rangle$ be the 4-dimensional Sweedler's Hopf algebra with char $k \neq 2$.

- Every Poisson algebra structure on H₄ is given by {g,x} = λx + μgx for some λ, μ ∈ k.
- 2 There is no nontrivial Poisson Hopf algebra structure on H₄.
- So Every co-Poisson structure on H_4 is given by q(1) = q(g) = 0, $q(x) = \alpha \Delta'(x), q(gx) = \beta \Delta'(gx)$ for some $\alpha, \beta \in k$.
- There is no nontrivial co-Poisson Hopf algebra structure on H₄.

Proposition 3.1

Let C be a coalgebra, $q : C \to C \otimes C$ be a linear map. Then, (C, q) is a co-Poisson coalgebra $\Leftrightarrow C^*$ with $q^* : C^* \otimes C^* \to C^*$ is a Poisson algebra.

If $g: C \to D$ is a co-Poisson coalgebra morphism, then $g^*: D^* \to C^*$ is a Poisson algebra morphism.

くロ と く 同 と く ヨ と 一

Recall for an algebra A, $A^{\circ} = \{f \in A^* \mid \ker f \text{ contains a cofinite (left/right) ideal I of } A\}.$

Proposition 3.2

Let A be a Poisson algebra. If A is a left or right noetherian, then A° is a co-Poisson coalgebra.

Example 3.3

Let $A = k[x_1, x_2, \dots, x_n, \dots]$ be a polynomial algebra with variables $\{x_i \mid i \ge 1\}$. Let $p(x_i \otimes x_j) = \{x_i, x_j\} = 1$ for all i < j. Then p gives a Poisson algebra structure on A. Let $\varepsilon : A \to k, x_i \mapsto 0$ be the augmentation map. Then $\varepsilon \in A^\circ$, but $p^*(\varepsilon) = \varepsilon p \notin A^\circ \otimes A^\circ \cong (A \otimes A)^\circ$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 3.4 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a left or right noetherian Poisson Hopf algebra. Then H° is a co-Poisson Hopf algebra.

Theorem 3.4 is stated in [KS, Proposition 3.1.5] without noetherian hypothesis. Without this hypothesis, it is not true as showed in the following example.

(4 同) 4 ヨ) 4 ヨ)

Example 3.5

Let $A = k[x_1, x_2, \cdots]$ with the Poisson Hopf algebra structure by letting

$$\{x_1, x_i\} = 0 \text{ for all } i \geq 2,$$

for $1 < i < j \in \mathbb{N}$,

$$\{x_i, x_j\} = \begin{cases} x_1, & j = i+1, \\ 0, & otherwise. \end{cases}$$

Then $\{-,-\}^*(A^\circ) \nsubseteq A^\circ \otimes A^\circ$, thus $\{-,-\}^*$ is not a co-Poisson Hopf structure on A° .

3

Theorem 3.6 (L. I. Korogodski, Y. S. Soibelman 1998)

Let H be a co-Poisson Hopf algebra. Then the Hopf dual H° is a Poisson Hopf algebra.

Oh and Park prove that the Hopf dual H° of a co-Poisson Hopf algebra H is a Poisson Hopf algebra when H is an almost normalizing extension over k, suggested by the $U(\mathfrak{g})$ case.

This is true in general. A complete proof is given in [LW] and [Oh] in 2015.

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Co-Poisson structures on $k[x_1, \dots, x_d]$

Let $\mathfrak{g} = kx_1 \oplus kx_2 \oplus \cdots \oplus kx_d$ be the *d*-dimensional abelian Lie algebra. Then $A = U(\mathfrak{g}) = k[x_1, \cdots, x_d]$ is a Hopf algebra. Note that $\mathfrak{g} = P(A)$.

Let $\mathcal{H}(A)$ be the standard *k*-basis of *A* which contains all monic monomials.

In the following, for $a \in A$, $\Delta(a) = \sum a_1 \otimes a_2$ is always assumed to be the expression by the standard k-basis of $k[x_1, x_2, \dots, x_d]$.

Denote
$$\mathcal{I} = \bigoplus_{1 \leq i < j \leq d} k(x_i \otimes x_j - x_j \otimes x_i).$$

Motivation Poisson structures and copoisson structures Duality between Poisson and co-Poisson structures (Co-) Poisson structures on k[x₁,..., x_d]

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Lemma 4.1

Let C be a coalgebra, $X \in C \otimes C$. Then

$$X \in \mathcal{I} \Leftrightarrow (1+t_2)X = 0 \text{ and } (\Delta \otimes 1)(X) = (1-t_3)(1 \otimes X).$$

Lemma 4.2

Let B be a bialgebra. If $X \in B \otimes B$ is skew-symmetric, then so is $X\Delta(x)$ for any $x \in P(B)$.

(日)

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Theorem 4.3 (Reciprocity law)

Let $q: A \rightarrow A \otimes A$ and $I: A \rightarrow A \otimes A$ be two linear maps. Then

イロト イヨト イヨト

э

Motivation Poisson structures and copoisson structures Duality between Poisson and co-Poisson structures (Co-) Poisson structures on k[x₁, · · · , x_d]

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Theorem 4.4

A linear map $q : A \rightarrow A \otimes A$ gives a co-Poisson coalgebra structure on A if and only if there is a linear map $I : A \rightarrow A \otimes A$ such that,

• The image of I is contained in \mathcal{I} .

2)
$$q(a) = I(a_1)\Delta(a_2)$$
 for all $a \in A$.

The co-Jacobi identity holds for q.

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Theorem 4.5 (Continued)

In this case, we may assume that, for any $a \in \mathcal{H}(A)$,

$$I(a) = \sum_{1 \leq i,j \leq d} \lambda_a^{ij} x_i \otimes x_j \in \mathcal{I}$$

with $(\lambda_a^{ij})_{d \times d} \in M_d(k)$ skew-symmetric. Then the co-Jacobi identity holds for q if and only if for all $1 \le i < j < k \le d$ and $a \in A$,

$$\sum_{s=1}^{a} \left(\lambda_{a_1}^{sk} \lambda_{x_s a_2}^{ij} + \lambda_{a_1}^{si} \lambda_{x_s a_2}^{jk} + \lambda_{a_1}^{sj} \lambda_{x_s a_2}^{ki} \right) = 0.$$

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Proposition 4.6

Let A = k[x, y]. Then there is an one-to-one correspondence between the co-Poisson structures q on A and the linear maps $I : A \rightarrow \mathcal{I} = k(x \otimes y - y \otimes x)$, given by

 $\begin{aligned} (I:A \to \mathcal{I} \subseteq A \otimes A) \mapsto (q:A \to A \otimes A, a \mapsto I(a_1)\Delta(a_2)), \ and \\ (q:A \to A \otimes A) \mapsto (I:A \to A \otimes A, a \mapsto (-1)^{|a_2|}q(a_1)\Delta(a_2)). \end{aligned}$

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

This is dual to [CAP, Proposition 1.8] in some sense.

Proposition 4.7

Any Poisson algebra structure on $A = k[x_1, \dots, x_d]$ is given by $\{x_i, x_j\} = f_{ij}$ where $\{f_{ij}\}_{d \times d}$ is a skew-symmetric matrix over A such that for all $1 \le i < j < k \le d$,

$$\sum_{l=1}^{d} \left(f_{lk} \frac{\partial f_{ij}}{\partial x_l} + f_{li} \frac{\partial f_{jk}}{\partial x_l} + f_{lj} \frac{\partial f_{ki}}{\partial x_l} \right) = 0.$$
(4.1)

Co-Poisson coalgebra structure on *A* **Poisson Hopf algebra structure on** *A* Co-Poisson Hopf algebra structure on *A*

Proposition 4.8

Any Poisson Hopf structure on $A = k[x_1, \cdots, x_d]$ is given by

$$\{x_i, x_j\} = \sum_{l=1}^d \lambda'_{ij} x_l (1 \le i, j \le d),$$

where $\lambda_{ij}^{l} = -\lambda_{ji}^{l}$, subject to the relations, for any $1 \leq i < j < k \leq d$ and any $1 \leq s \leq d$,

$$\sum_{l=1}^{n} \left(\lambda_{lj}^{l} \lambda_{lk}^{s} + \lambda_{jk}^{l} \lambda_{li}^{s} + \lambda_{ki}^{l} \lambda_{lj}^{s} \right) = 0.$$

3

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* Co-Poisson Hopf algebra structure on *A*

Theorem 4.9

A linear map $q : A \to A \otimes A$ gives a co-Poisson Hopf structure on A if and only if there exists a linear map $I : A \to I$, such that for any $a \in A$,

- **1** I(a) = 0 if $a \neq x_i (1 \le i \le d)$.
- $(a) = I(a_1)\Delta(a_2).$
- Ithe co-Jacobi identity holds.

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* Co-Poisson Hopf algebra structure on *A*

Theorem 4.10

Any co-Poisson Hopf structure q on A is given by

$$q(x_s) = \sum_{1 \leq i,j \leq d} \lambda_s^{ij} x_i \otimes x_j \ (1 \leq s \leq d),$$

with $\lambda_s^{ij} = -\lambda_s^{ji}$, subject to the relations, for any $0 \le i < j < k \le d$ and $1 \le s \le d$,

$$\sum_{l=1}^{d} \left(\lambda_{s}^{lk} \lambda_{l}^{ij} + \lambda_{s}^{li} \lambda_{l}^{jk} + \lambda_{s}^{lj} \lambda_{l}^{ki} \right) = 0.$$

э

Motivation Poisson structures and copoisson structures Duality between Poisson and co-Poisson structures (Co-) Poisson structures on k[x₁, · · · , x_d]

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* Co-Poisson Hopf algebra structure on *A*

Example 4.11

Let A = k[x, y]. Then there is an one-to-one correspondence between the co-Poisson Hopf structures q on A and $(I_x, I_y) \in \mathcal{I} \times \mathcal{I}$, given by

$$q \mapsto (q(x), q(y)), and$$

 $(I_x, I_y) \mapsto q : x^n y^m \mapsto nI_x \Delta(x^{n-1}y^m) + mI_y \Delta(x^n y^{m-1})$

イロト イポト イヨト イヨト

э

Motivation Poisson structures and copoisson structures Duality between Poisson and co-Poisson structures (Co-) Poisson structures on k[x₁, · · · , x_d]

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* Co-Poisson Hopf algebra structure on *A*

Theorem 4.12

Suppose char k = 0. Let $\tilde{A} = k[[x_1, x_2, \dots, x_d]]$ be the algebra of formal power series and $A = k[x_1, \dots, x_d]$. Then there is an one-to-one corresponding between Poisson algebra structures on \tilde{A} and co-Poisson coalgebra structures on A.

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* **Co-Poisson Hopf algebra structure on** *A*

Theorem 4.13

There is a one-to-one corresponding between Poisson Hopf structures on A and co-Poisson Hopf structures on A. More precisely, assume

$$\{x_i, x_j\} = \lambda_1^{ij} x_1 + \dots + \lambda_d^{ij} x_d$$

defines a Poisson Hopf structure on A. Let

$$I(x_s) = \sum_{1 \leq i,j \leq d} \lambda_s^{ij} x_i \otimes x_j$$

for $1 \le s \le d$ and I(a) = 0 for all other $a \in \mathcal{H}(A)$. Then $q(a) = I(a_1)\Delta(a_2)$ defines a co-Poisson Hopf structure on A.

- L.-G. Camille, P. Anne and V. Pol, Poisson Structures, Grundlehren der Mathematischen Wissenschaften 347, Springer, Heidelberg, 2013.
- V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Providence, 1994.
- V. G. Drinfeld, Quantum groups, Proc. Internat. Congr. Math. (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798-820.
- D. R. Farkas, G. Letzter, Ring theory from symplectic geometry, J. Pure Appl. Algebra 125 (1998), 155?190.
- L. I. Korogodski, Y. S. Soibelman, Algebras of Functions on Quantum Groups, Part I, Mathematical surveys and monographs, V. 56, Amer. Math. Soc., Providence, 1998.

Co-Poisson coalgebra structure on APoisson Hopf algebra structure on ACo-Poisson Hopf algebra structure on A

Q. Lou, Q.-S. Wu, Co-Poisson structures on polynomial Hopf algebras, to appear in Sciences China, Mathematics (arXiv:1601.04269v2 [math.RA])

Co-Poisson coalgebra structure on *A* Poisson Hopf algebra structure on *A* Co-Poisson Hopf algebra structure on *A*

Thank You!

Q. -S. Wu Co-Poisson coalgebras and (co-)Poisson Hopf algebras

(日)