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ABSTRACT

HIGH ORDER FINITE DIFFERENCE METHOD FOR
INCOMPRESSIBLE FLOW

by Cheng Wang

Doctor of Philosophy
Temple University, 2000

Advisor: Dr. Jian-Guo Liu

This work is concerned about a set of computational methods for incom-
pressible flow. whose behavior can be governed by Navier-Stokes Equations (NSE).
Finite Difference Schemes are concentrated here. The efficiency of these methods
lies in the fact that only Poisson solver and heat equation solver are needed at
each time stage. No Stokes-type equation needs to be solved and there is no cou-
pling between momentum and kinematic equations. This makes the whole scheme
extremely robust. Stability and convergence analysis are also documented. Some
numerical examples are presented. along with perfect accuracy check with each
scheme. The topics in this thesis include: Gauge formulation and the correspond-
ing implicit gauge method: Second order scheme based on vorticity formulation.
along with the choice of vorticity boundaryv condition; Stability and convergence

analysis of Essentially Compact Fourth Order Scheme (EC4); Computation of

i
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flow on multi-connected domain: A fourth order numerical approximation to

Boussinesq flow. which are discussed in each chapter, respectively.
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CHAPTER 1
INTRODUCTION

The subject of Computational Fluid Dynamics has attracted a lot of at-
tentions these vears. The starting point of this subject is to design computational
methods to approximate Navier-Stokes Equations (NSE). which can describe the
motion of incompressible flow veryv well.

N\SE has two widelyv-used formulations: Velocity-Pressure Formulation and
Vorticity-Stream function Formulation. The velocity-pressure formulation with

no-flow. no-slip boundary condition can be written as

u, + (u-V)u+ Vp=viu. in Q.
(1.1) V-u=0. in Q.
u=20. on J902.

where u = (u, v) is the velocity. p is the pressure and v is the kinematic viscosity.
There are three main difficulties in the numerical simulation of incompress-
ible flow in the primitive formulation:
(D1) The implementation of the incompressibility constraint V-u = 0.
(D2) There is no dvnamic equation and no boundary condition for the pres-
sure p. Indeed, p is mainly a Lagrange multiplier to assure the incompressibility.
(D3) The implementation of the no penetration and no-slip boundary con-
dition.
To overcome the above difficulties. E and Liu proposed a new formulation.

Gauge formulation in [ELG!]. Instead of using primitive variables of NSE, the
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gauge formulation replaces pressure by a gauge variable o and introduces the

auxiliary field @ = u—Vo. Then the incompressibility constraint in (1.1) becomes
(1.2) Lo =-V-a.

and the momentum equation in (1.1) becomes

1 1
(1.3) at+(u‘V)u+V(8to——Ao+p) = —Aa.
Re Re
[f we impose
(1.4) 8,6 — —No = —
- (X0 Re Q0= —p.
we obtain the gauge formulation of NSE
1
. = — in Q.
a;+(u-Viu e Da. in
(1.5) Lo =-V-a. in Q.
u=a+Vo. in 2.

Onmne of the main advantages of Gauge formulation is that ¢ is a non-physical
variable. so we have the freedom to assign boundaryv condition for ¢. Corre-

sponding to the no-flow, no-slip boundary condition v = 0 on Jf2, we can either

prescribe:
; d
(1.6) a—o-—:O, an =20, a.-‘r:—,—o. on 992,
on or
or
5¢
(1.7) o=0, a-n=——o—, aT=0. on 0f2.
an

where 7 is the unit tangent vector.
Neumann gauge formulation (1.3) and (1.6) can be written in another form

a;+(u-Viu=—~Aa. in Q.

(1.8a) )
a-n=0. a~-r=—gg. on JQ).
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No=-V-a. in Q.

(1.8b)
20— =0. on JN.
an

(1.8) can be easily solved by finite difference method. which will be discussed
in detail in Chapter 2. For simplicity of presentation, we take Re = 1. For
example. if backward Euler method is used as the time discretization for the

momentum equation, we have

an+1 . .1

n n _ n-l H i
NI +(u"-V)u Aa™"" . in Q

(1.9)

Still. the boundary conditions for @ has to be determined to implement (1.9).
To aveid the coupling between the momentum equation and the boundary con-
ditions. we use explicit boundary conditions for a, which are carried out by

vertical extrapolation. For the first order scheme. we can just take

. : do"
(1.10) a”''n=0. a" .=~ on 0.
or
Next we update ¢™*! at time step t"7! by
Aot = —V-a™ !, in Q2.
(1.11) ~
9% — 0. on J2.

an

and the velocity u™*! is determined by the incompressiblity
(1.12) u! = a™!' + Vol

[t can be seen that the momentum equation (1.9) is decoupled from the kinematic
equation (1.11) due to the fact that the boundary conditions for @ in (1.10) are
explicit.  The resulting scheme is verv efficient and the computational cost is
reduced to solving a standard heat and Poisson equation.

The main contribution of Chapter 2 is to show that the explicit boundary

condition for a in (1.10) is unconditionally stable for Stokes flow. In addition.
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the main convergence theorem for Stokes equations is stated below. which is just
Theorem 2.3.1 in Chapter 2:

Theorem 1.1 Let (u,0) be a smooth solution of Stokes equations with smooth
initial data u®(x) and let (wp,. 04,) be the numerical solution of the semi-discrete

gauge method with explicit boundary conditions. Then we have
(1.13) lu — warllL=cor:2) < CAL.

For the full nonlinear Navier-Stokes equations. the time stepping constraint
is reduced to the standard CFL constraint 2—; < C. The corresponding conver-
gence theorem is stated below. which is Theorem 2.4.1 in Chapter 2:

Theorem 1.2 Let (w, @) be a smooth solution of the Navier-Stokes equations with
smooth initial data w°(x) and let (un. on) be the numnerical solution of the gauge
method coupled with the MAC spatial discretizations. Assume the CFL constraint

At < Ch for some suitable constant C which we will specify in detail later, then

we have
(1.14) lu — unllp~ < C(At+h7).

There are some other ways to overcome the three difficulties mentioned for
the primitive formulation (1.1). For 2D flow. the first and second difficulties can

be eliminated in the vorticity-stream function formulation
Ow + V-(uw) =vAe.
(113) Ay =w.
u= —0g,u. v =0
where o denotes the vorticity and the no-flow. no-slip boundary condition can be
written in terms of the stream function v

(1.16) v =C.,. O _0. at each r,.
on
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where C, is constants at each boundary section [,. In the simplv-connected
domain. Cy can be set to be 0. [t can be seen that the above formulation has
the advantage that it not onlv eliminates the pressure variable. but also the
incompressibility is automatically enforced. Thus it brings a lot of convenience
in computation. Yet. the main difficulty in the numerical simulation of (1.13).
(1.16) is the boundary condition:

(D3(1)) The implementation of the two boundary conditions for the stream
function in (1.16).

(D3(2)) When the vorticity is updated in time (in the momentum equa-
tion). there is no definite boundary condition for vorticity.

The methodology to overcome the above difficulties is to solve for the stream
function using Dirichlet boundary condition ¢* = 0 on I'. and then compute the
vorticity at the boundary from the stream function via the kinematic relation

and no-slip boundary condition. For example. either Thom’s formula

- 20,
(1.17) o = T
or Wilkes-Pearson’s formula
) 1 1
(1.18) <0 = E(‘h—"’z.l - §U1.2) .

can be used as vorticity boundary condition.

In Chapter 3, it will be shown and argued that either Thom’s formula or
Wilkes™ formula, coupled with 2nd order centered difference scheme at the interior
points

duw + D (uw) + Dy(vw) = vhipwe.
(1.19) Apy = & v r=0.
u = —Eyz.'. v = D,
give full 2nd order accuracy for the whole scheme. Wilkes' formula gives higher

order accuracy for the vorticity on the boundary than Thom’s formula by formal
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Taylor expansion. In particular. it will be very useful for non-uniform grids. The

main theorem in Chapter 3 can be stated as

Theorem 1.3. Let u, € L>=([0.T]: C>*(Q)). v.. w. be the ezact solution of the
Navier-Stokes equations (1.15). (1.16) and uy. <, be the approrimate solution of
the second order scheme with Pearson-Wilkes formula. then we have
(1.20)

Hue — wnllL=(or o) + VVilwe = wrllzio.2)

2 . cT 9
< Ch?|[utefl c=qorr.coo) (1 + l1ell =010 Jexp {7(1 + ||ue”2c-=([o.T1.61))} ,

which is just Theorem 3.4.1. Full 2nd order accuracy is also demonstrated nu-
merically. Our analysis results in almost optimal regularity assumption for the
exact solution.

The main contribution of Chapter 3 is to show that Wilkes’ formula also
has good stability property. In addition. this stability argument can be applied
to other long-stencil formulas. [t cannot be directly derived from straightforward
manipulations since more interior points are involved in the formula. A new
methodology is developed to establish this stability analvsis. The main idea is to
control local terms by global quantities via discrete elliptic regularity for stream
function.

[n Chapter 4, a fourth order finite difference method based on (1.13), (1.16)
ts considered. The scheme is essentially compact fourth order scheme (EC4),
which was proposed by E and Liu in [ELV2]. and can be implemented very
efficiently. Motivated by the fourth order approximation to A in 2-D

Ay + £ D2D?
(1.21) A=t 6=y
1+EA"

+O(hY).
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they discretize NSE in 2-D bv

( W, )
9F = (Du + = DD~ NL.

h* .
(1.22) S (An + —;—D;D;)L, =. elr=0.

2

h= ‘ _
(1 + FA;,)W =<,

where the intermediate variable = was introduced as = = (1 + %Ah)w. and the
approximate nonlinear term A L is given by

~ h? ., — h* h2 —~ —
(1.23) NL =D, (1+ ED;)(UJ) + Dy(1 + —6—D;)(v.u) — l—Q-Ah(uDIw +vDys) .

To compute the third term in (1.23) near the boundary. uD,w + vb-yw can be set
to be 0 on I, since the velocity field vanishes on the boundary. In addition. the
velocity w = (—0yy, d;v') can be valued by using the standard long-stencil 4-th
order formulas:

— h® — h* .,
(1.24) u=-D,(1- ZD)v. v=D.(1- —g— D).
Similar to the second order case discussed in Chapter 3, the vorticity bound-

ary condition is a very important issue. Either Briley’s formula

(1.25) Wio = L(6 Sel — gu +gl." )
. 1.0 — [2,2 Yr1 2 1.2 - 9 1.3

which gives 3rd order accuracy for the vorticity on the boundary, or a new higher

order formula

8y
9L1.3 8Lx.«l .

(1.26) w0 = g(8uiy = Beea +
which will be derived in Chapter 4, and indicates 4th order accuracy for the
vorticity on the boundary. can be chosen as the vorticity boundary condition.
The use of either boundary condition results in a stable method. The EC4 scheme

with Briley's formula was analyzed by E and Liu in [ELV'2]. The main result in

Chapter 4 can be stated in the following theorem. which is Theorem 4.3.1:
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Theorem 1.4. Let u, € L=([0.T]: C"*()) be the solution of the Navier-Stokes

equations and uy, be the approrimate solution of EC4. then we have

(1.27) lu — wnllo=orey) < ChYueil=or.cre)
(L + [luellL>jo.71.05))exp {C—C:,—T} .
where C* = (1 + {[wellL~(0.71.05))°.

Since the vorticity boundary condition (1.25) or (1.26) are long-stencil for-
mulas. we adopt the similar technique of stability analysis used in the third
chapter. which is to control some local terms by the diffusion term via discrete
elliptic regularity, thus guarantees the stability of both formulas. To illustrate
the idea of both stability and consistency analyvsis more clearly, we choose to
give a detailed analysis of both formulas in a simple 1-D Stokes model in Sec-
tion 4.2. The consistency analysis for Brilev's formula is implemented by Strang
type expansion; while that of our new 4-th order vorticity boundary condition is
more straightforward, no correction term is needed. Physical no-slip boundary
conditions are used throughout.

In Chapter 5, an application of finite difference method based on vorticity
and stream-function variables to multi-connected computational domain is con-
sidered. As discussed above. using the vorticity and stream-function variables is
an effective way to compute 2D incompressible flow due to the fact that the in-
compressibility constraint for the velocity is automatically satisfied, the pressure
variable is climinated, and high order schemes can be efficiently implemented.
However. the difficulty arises in the multi-connected computational domain in
determining the constants of the stream function on the boundary of "holes™.
This is an especially difficult task for the calculation of unsteady flows, since
these constants vary with time to reflect the total fluxes of the flow in each sub-
channels. An efficient method in finite difference setting is presented to attack

this task. For simplicity of presentation, the following domain is chosen:
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Figure 1.1: An example of multi-connected Domain

The outer boundary A, B,C, D, is denoted as [y. the inner boundary ABCD
is denoted as I'y. In more detail, 4. B, C. D have grid indices (n,n), (n, m).
(m.m). and (m,n), and 4,. By. C,. D, have grid indices (0.0), (0, V), (.V..V).
(.\NV.0). respectively. n and m are given by n = %\ m = -:5’-\ and the grid size is
chosen as Ar = Ay = h.

The starting point of the discussion in Chapter 5 is the following equivalent
formulation of the incompressible NSE for the multi-connected domain in terms

of vorticitv-stream function formulation

( l.).Sd) B(JJ + (u‘V)u} =vAw.
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(128[)) Av =w.

(1.28c¢) ¢lr=C,.. = =0. ateach [},
an
Ow .
(1.28d) — =0. for 0<i<k.
r. on
(1.28e) u=—-d,u. v=0d.u.

where the derivation of the boundary condition [ g—;"l'— = 0 in (1.28d) is based
on NSE with the primitive variable formulation. Since the stream function is
uniquely determined up to a constant. the constant at the outer boundary [y can
be automatically set as 0, i.e. Co = 0.

The key part is the computation of Poisson equation (1.28b) and enforce-
ment of boundary conditions (1.28c). (1.28d). The standard centered difference
approximation to (1.28b) and the use of Dirichlet boundary condition in (1.28c)
leads to

Ah Uv=w. in Q.
(1.29)
[ ‘[‘0=0. L Irl=C1.
Yet. the constant C; is not known vet. In Chapter 5 it will be shown that such
constant has to be obtained through the boundary condition in (1.28d).
As mentioned in Chapter 3. the no-slip boundary condition % = 0 can be
converted into the boundary condition for the vorticity by local formulas, such as

Thom's formula. Especially. on A D. one boundary section of '}, Thom’s formula

indicates
2"-'/'1 n—-1 — 2uy n
(130) “Win = - 2
The boundary condition [, aa—,;’,_ = 0 can be implemented by finite difference
. . . . . . 4&)-1 —w'_z'—3uj
approximation. Using the one-sided difference operator —— '7';1 ] =
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as the second order approximation to g_;z (at the boundary section AB). and

plugging into the boundary condition (1.28d) results in

(0) 1 ) 1 r(@
1.31 / w=xf e,
( ) r, 3Jr, 3/,

The notation _I}Slf) f is introduced as

(k)
(1.32) / f =/ fa-k, +/ fim+k +/ fm+k.j+/ fin—k-
r AB BC cD DA

where the trapezoid rule is applied to the integration at each boundary sections.
The substitution of Thom's formula (1.30) into the left hand side of (1.31), along

with the fact that ¥ is a constant C; on the boundary I';, gives

1, /0 g 1., [
1.33 = — / :,--—;f/ J,-+—h-/ .
( ) Cl lrll( ry ¢ 3 Cy 3 r d)

[t is argued in detail in Chapter 5 that the formula (1.33) plays the role of
a bridge between the constant C; and the boundary condition (1.28d). Then the
coupled syvstem (1.29), (1.33) will be used to compute ¢ and the constant C; by
a fixed point iteration.

As can be seen, the right hand side of (1.33) depends on C,. Thus an
operator o can be introduced by (1.33): for any constant C. denote ¢ as the

solution of the system

_ Dpe = o, in Q,
(1.34)
Ulro=0. v |r,=C.

and define
1 (n 1, 1 ., (2
(1.3 @C=—/ ~—-h-’/ .u-f-—h"/ <)
) 5(C) lm(r, vt ) [ )
Obviously, the fixed point of o. i.e. the constant C such that ¢(C) = C.
along with ¢ determined by (1.34). is exactly the solution of the coupled system

{1.29). (1.33). The existence and uniqueness of the fixed point can be guaranteed
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by the following Proposition stating that o is in fact a coutraction mapping,.

which is Proposition 5.2.1:
Proposition 1.5 For any C,. Cy € R. we have
(1.36) [o(Cy) — @(Co)| < C*|C, — (. where C*=1-h.

The above proposition provides a means for solving the system (1.29), (1.33)
by iteration procedure: once the A-th iteration for the constant ka) is obtained.
solve the stream function v*) using the boundary condition C!*’. then update
the constant kaﬂ)by (k + 1)-th iteration: CEkH) = O(ka)). The proposition
indicates that this iteration procedure converges to the real solution of (1.29),
(1.33).

In addition. the momentum equation and the velocity field in (1.28a), (1.28e¢)
can be treated by the second order finite difference method in the same way as in
Chapter 3. which can be written as (1.19). The whole scheme can be implemented
very effectively through the explicit treatment of time discretization. such as
fourth order Runge-Kutta time stepping. as discussed in detail in [ELV1|. That

makes the whole scheme extremely effective.

Similar procedure and scheme can also be applied to the fourth order method.

the EC4 scheme. which was considered in Chapter 4. The scheme (1.22)-(1.24)

can be carried out here to deal with multi-connected domain. Briley’s formula

(1.25) is also valid here. Still. the boundary condition Ir, 3;1, = 0 is used to
obtain the value for C;. Yet, the implementation is a little different from the sec-
ond order case. The reason is that the vorticity in the interior points has to be
determined by a Poisson-like equation and the boundary condition for w. which.

in turn. depends on the stream function and C,. by Brilev's formula. To avoid

the coupling between the two systems. we express %’l— in terms of a third order
derivative of ¢ as can be seen. on the boundary section AD of [';. g—;z = —-831,/).
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On the other hand. 83 can be approximated by

, |
(137) 331’),-',1 ~ 'E,';'(l':)l.u'z.u—l - 61'1.!1—'.’ + Lin-3 — IOL'i.n) -

Plugging into the boundary condition [ g—;’l = 0. we arrive at an equality similar

to (1.32)

L.38) (0) 3 (1) 3 (2 1 73
(L /n ‘/-ifn L'gfr, ”m/n v

Since v is a constant C; on [';. we have

3 (1) 3 (2) 1 (3)
= o= 2 v+
2|0 Jry 5[ Jry 10| | Jr,

(1.39) C,

Again. the formula (1.39) playvs the role of a bridge between the constant
C'i and the boundary condition [ g—;l = 0. Of course. the right hand side of
(1.39) depends on C). Then we need to solve (1.39) along with the following

Poisson-like equation

h* o 2y ~h?
(1.40) (A"’LEDrDy)'* =(1+ EA")”‘
w l[‘o=0. L IF;:C1.

which is a coupled system.
A similar procedure of iteration can be carried out in the fourth order
method. First. we define the operator ¢: for any constant C, let ¥ be the

solution satisfving

h2 5 o hz
(L11) (Ah+-6-D;Dy)U7=(1+ -i—zﬂh).o
'L//'II‘O:—‘O. v Il‘sz'
and o((C’) is defined by
3 (1) 3 (2) 1 (3)
142 = / P p o — ;
42) AN =5 YT AR T O
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The following proposition. which is Proposition 5.3.1. states that ¢ in (1.42)

is also a contraction mapping.

Proposition 1.6 For any two constants C,. C,. we have

(1.43) lo(Ch) — o(C2)| < C7

C, —Cy. where C* =1 - 0O(h).

A similar method for solving the svstem (1.39). (1.40) can be obtained by
the iteration procedure: once the A-th iteration for the constant Cik) is obtained.
solve the stream function ¢*) using the boundary condition C{k) in (1.40), then
update the constant kaH) by (k + 1)-th iteration: C{kH) = O(C{k)). The above
proposition guarantees that this iteration procedure converges to the real solution
of (1.39). (1.40).

Some numerical experiments including an accuracy check of a forced flow,
flow past a cooling system, etc.. are documented in Chapter 5.

In Chapter 6. a fourth order finite difference method for 2-D unsteady in-
compressible Oberbeck-Boussinesq equations is considered. Boussinesq equation

in vorticity-stream function formulation can be written as

(9,0 + (u-V)0 = k8.

J Ow + (u-Viw = Rid.0 +vAw.
(1.44)

u= —-0g,u. v=0v

.
where ~ is the heat conductivity and Rz is the Richardson number. In a simply-
connected domain, the natural no-flow. no-slip boundary condition can be written
as (1.16) with C = 0. For the temperature 6. either the Dirichlet boundary

condition 8 |r= 8, where 8, is a given distribution for the temperature on the

ag

boundary: or. the Neumann boundary condition 5z = 6y on I'. where 8y is a

given heat flux on the boundary. can be imposed.
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The temperature transport equation is treated explicitly by long-stencil

fourth order approximations to d,. d,. and A

. -~ h? ~ h h? . ‘
(1.45) 98 +uD.(1— =D3)8 +¢D,(1 — =D))f = k(D — 5 (Di+ D;))6.
The temperature at "ghost points™ is evaluated by one-sided extrapolation near
the boundary and some information from the original PDE.

If the Dirichlet boundary condition for the temperature is imposed. 6; 4 can
be given accurately on the boundary. Accordingly, (1.45) shall be updated at
interior points. Thus only one “ghost point” value 6; _, needs to be obtained.
Local Taylor expansion near the boundary along with some information from the

PDE. gives us

20 6 4 1 12,1 <
1.46 0,‘ -1 = T7V;0 — —0, - —9,' 2 —9,' —/ 2(=¢ 6, — 20 ia .
( ) 0 119.0 117~ 1% + 11 3+ T (Kdt b — 0z6s) + O(R°)

The detailed derivation can be found in Chapter 6.

A similar derivation can be carried out to obtain the “ghost point” values
for 8 if the Neumann boundaryv condition for the temperature is imposed. In
this case. (1.43) is updated at every computational point. This in turn requires
that we determine two “ghost point” values 6, _; and 6, _, to carry out (1.43).
The same strategy of one-sided approximations is applied. The approximated
evaluation for 6;, and 6; ., can be written as

2
(LA7) Oi-1 = 0;) — 2h0; — %i(%o]t - %«4‘1.05:(1 - %Di)oi.o - 9]::) :

8h3 /1 1 = h*
(1.48) 0,2 =0;5 —4h6; — —3—(;9}1 - ;u—'z.oDz(l - 301)9:‘.0 - 9/::) .
The detailed derivation is also given in Chapter 6.
The momentum equation in (1.43) can be treated as the same way as the

EC4 scheme discussed in Chapter 4. The only difference is the gravity term
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Ri0.6. which can be treated by the following approximation

v

t

h® ., h

h2 N . 2 2 . K
(1+']§A)ax= Dz(l‘?'E‘D, - EDx)""O(h )
(1.49) b2 b2
= D, + 1—2 ID; - EDID; + O(h4) .

The whole scheme coupled with explicit Runge-Kutta time stepping gives a
very efficient fourth order method for Boussinesq equations. Its efficiency can be
seen in that only two standard Poisson-like equations are required to be solved at
each Runge-Kutta time stage in the computation. An example of the Loren flow
is presented. in which the full accuracy can be seen. The numerical simulation of
a strong shear flow induced by a temperature jump. is resolved by two perfectly

matching resolutions.
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CHAPTER 2

CONVERGENCE AND ANALYSIS OF
GAUGE METHOD

2.1 Introduction and Review

We start with the homogeneous. incompressible Navier-Stokes equations

(NSE) with no-slip boundary condition:
1

u,+ (u-ViYu +Vp = R@Au. in Q.
(2.1.1) Vu=0. inQ.
u=0, on JO2.

where w = (u. v) is the velocity, p is the pressure and Re is the Reynolds number.

A new formulation, Gauge formulation was proposed by E and Liu in [ELG1].
[nstead of using primitive variables of NSE. the gauge method replaces pressure
bv a gauge variable ¢ and introduces the auxiliary field @ = w — Vo. Then the

incompressibility constraint in (2.1.1) becomes
(2.1.2) Ao =~-V-a.

and the momentum equation in (2.1.1) becomes

1 1
2 ; ! . —_—— = — .
(2.1.3) a + (u V)u+V(c’),o Re&o+p) R()Aa
[f we impose
(2.1.4) oo — —I-Ao’ = —p.
Re &6 .
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we obtain the gauge formulation of NSE

|
a,+(u-Viu=—~"Aa. in Q.
Re
(2.1.5) Nop=-V-a. in Q.
=a+ Vo. in Q.

One of the main advantages of gauge formulation is that o is a non-physical
variable. so we have the freedom to assign boundaryv condition for 6. As pointed
out in {ELG1], corresponding to the no-slip boundary condition u = 0 on 9. we

can either prescribe:

00 00
) = n = = _ % ;
(2.1.6) o 0. an=20,. aT e on J9).
or
(2.1.7) o=20. a-nz—?—o. at=0. on J9).
on

where 7 is the unit tangent vector. The svstem (2.1.5). (2.1.6) is called Neumann
gauge formulation and (2.1.35), (2.1.7) is called Dirichlet gauge formulation. In
this chapter. we will concentrate on the Neumann formulation. while we will give
a brief description of the analysis with respect to the Dirichlet formulation.
The idea of gauge formulation has a long historv. For example. Oseledets
first used an impulse variable to reformulate Euler equations as in a Hamiltonian
svstem in [OV]: Buttke first used an impulse variable as a computational method
in [BT]: Maddocks and Pego used an impulse variable to formulate an uncon-
strained Hamiltonian for the Euler equation in [MP]: In [ELG3J. E and Liu found
that the velocity impulse formulation of Buttke [BT] is marginally ill-posed for
the inviscid flow and they presented numerical evidence of this instability. In
[RS]. Russo and Smereka studied the connection of different impulse/gauge for-

mulations. especially the stretching effects.
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\We can write the Neumann gauge formulation (2.1.5) and (2.1.6) in another

form
a,+(u-V)u:LAa. in Q.
) Re
an=0 a-1T=—-——. on JQ.
or
No=-V-a. in Q2.
(2.1.8b) do

'6—1;:0. onBQ.

With this new formulation at hand. we can easily solve (2.1.8) by finite
difference [ELG1], finite element [ELGZ2]. or other kinds of numerical techniques.
\We only consider finite difference here. In this chapter. we are mainly concerned
with the case wherever the Reynolds number is of O(1). which requires us to treat
the diffusion term implicitly. For simplicity in this presentation. we take Re = 1.
For example. if backward Euler method is used as our time discretization for the

momentum equation, we have
an+1 —a®

A7 + (u"-V)u" = Aa™"'. in Q.

(2.1.9)

[t is evident that the implementation of (2.1.9) requires that the boundary con-
ditions for a be determined. To avoid the coupling between the momentum
equation and the boundary conditions. we use explicit boundary conditions for
a. which are carried out by vertical extrapolation. For the first order scheme, we

can just take

. do"
(2.1.10) a" " ''n=0. a”lr=-——. on d .
or
Next we update ¢! at time step t"~! by
Aot = -V-.a"" . in Q.
(2.1.11) 9on+1
; =0. on Jf2.
on
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and the velocity u™*! is determined by the incompressiblity
(2.1.12) u' ' =g + Vol

We shall emphasize that the momentum equation (2.1.9) is decoupled from the
kinematic equation (2.1.11) due to the fact that the boundary conditions for a in
(2.1.10) are explicit. The resulting scheme is very efficient and the computational
cost is reduced to solving a standard heat and Poisson equation. As reported in
[ELGL1]. full accuracy was obtained with this explicit boundary conditions.

2.1.1 Stability of the Explicit Boundary Condition

One of the main concerns in the computations is the stability of the scheme.
The main observation of this chapter is that the explicit boundary conditions
(2.1.10) are unconditionally stable for Stokes equations. where nonlinear terms

are neglected. Using the method mentioned above. we can write our scheme as:

%-—-Aa"*l. in Q.
(2.1.13) i 1 do™
a" ' n=0. a’m T = on 992 .

or
then. we obtain ¢™*! via (2.1.11). finally. the velocity is given by (2.1.12).
For the convenience of our analysis below. we introduce 4" = a"*! + Vo".

the system (2.1.13), (2.1.11), (2.1.12) can be reformulated as:

an

u" —u"

A + AVo" = Au™. in Q.
(2.1.14a) ¢
u" =0, on JN,

ul —a" + V(o™ - o"l) =0. in

(2.1.14b) V-utl =0. in Q.
an __ el
9" —o"") )=n-u"+‘=0, on 9N .
on

This formulation is similar to the pressure increment formulation of the second
order projection method in [BCG]. [V'KJ]. So we can apply similar techniques

used in [ELP1] to analyze the stability of the system (2.1.14).
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The basic technique used here is just standard energy estimate. As can be
seen. if we take the inner product of the equation in (2.1.14a) with 24", and use
the boundary conditions for 4" in (2.1.14a). we have

1812 = | + a" - w2 + 200 VE"?

(2.1.15)
= —2A¢t /Q&"-VAO" dz = 2At/p(V-ﬁ")'_\o" dz = 1.

Taking the divergence of the first equation in (2.1.14b). we get
(2.1.16) V-a" = A(o™ — o).
Plugging back in to the last term in the right hand side of (2.1.15), we have

I = —'ZAt/QA(o"‘“ — 6" Ao dx
(2.1.17) — _At(llA.@n+1“2 . “AO"“L’) + At A (o — @n)“?.
= —At(ll[Ac |12 = [[Ae™]|?) + At V-a™|2,
where in the last step we used (2.1.16) again. \We note that ||V -@"|| can be
controlled by the diffusion term ||V4"||. The combination of (2.1.15) and (2.1.17)
results in
a7 = [[u™l® + [a" — u®||* + At|[Va"|?

+At([|Ao™ 7 — [[Ae"?) < 0.

(2.1.18)

Next. we need to do energy estimate of the first equation in (2.1.14b). As
can be scen. the incompressibility of w™*! together with the boundary condition
u""'-n = 0 on 9N for the normal component of u"~!. can guarantee that u"+!

is orthogonal to the gradient of " — o™ 1. i.e.
(2.1.19) /Qu"“-V(o"—o"“)d:z: =0.
[f we take the inner product of the first equation in (2.1.14b) with 2u™*!. we have

(2.1.20) 1~ @t + funt - @ =o.
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Finallv. the combination of (2.1.18) and (2.1.20) results in
(2.1.21) 2 = w2 + AHVET? + At(|Ao™ 2 - |As™2) < 0.

Then the proof is completed. to wit. that the gauge method with explicit bound-
ary conditions (2.1.10) is unconditionally stable for Stokes equations. The anal-

vsis in this chapter follows the philosophy used above.

Remark 2.1.1 The above arguments can also be applied in regard to the gauge
method using the Dirichlet formulation. The only difference is that the boundary
condition for the gauge variable analogous to (2.1.14b) will be ¢" — o"*! =
7-u""! = 0. Since u"*! is divergence-free. (2.1.19) is still valid, which in turn
vields (2.1.20). (2.1.15)-(2.1.18) are the same. Finally. (2.1.21) still holds. In
other words. the gauge method with explicit boundary conditions (2.1.10), either
in the Neumann or Dirichlet formulation. is unconditionally stable for Stokes

equations.

2.1.2 Connection between Projection Method and Gauge Method

The gauge method shares many similarities with the projection method
[ELG1]. The analysis of projection method has been thoroughly studied in
i{S1. S2. ELP1. WB]. We will adopt analyses and techniques similar to those
used in [ELP1]. One of the main differences between the gauge method and the
projection method is that the gauge method is a direct discretization of partial
differential equations (2.1.5), while the projection method is a fractional splitting
of the Navier-Stokes equations with some artificial numerical boundary condi-
tions. Consequently, the projection method results in a singular perturbation of
the original PDE and numerical boundary layers [OI2. ELP1]. This subtle fact is
reflected in our analysis of the numerical method by the fact that the consistency

analysis of the gauge method is much easier than that of the projection method,
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with regular expansions of the numerical scheme. and no numerical boundary
lavers are included. One of the other advantages of the gauge method is that it
overcomes some difficulties in the numerical computations of the incompressible
flow. such as the approximate projection in the projection methods [ABS] and

the pressure boundary conditions [GS]. Extension of the gauge method to the

3D case is also straightforward.

2.2 Time and Space Discretizations

We will use backward Euler method as our first order time discretization.
Crank-Nicholson method as our second order time discretization, and MAC grids
as our spatial discretization. Since our analysis in the following chapters is close

to that of the projection method. we adopt similar notations as in [ELP1].
2.2.1 Time Discretization
Backward Euler
The backward Euler time discretization of (2.1.8) with explicit boundary

conditions for a can be written as

an+l —a” . '
A + (u*-V)u" = Aa™*!'. in Q.

(2.2.1) ¢ o

a"*''n=0. a"*“}’:—a . on JQ,

T
and
Aérb:-l — _V_an-é-l. in Q.
(2-2-2) ao‘no;l
an 0. on 01).

and the velocity is given by
(2.2.3) u"! = @"! + TorT! .
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Crank-Nicholson
We can also discretize (2.1.8) using second order Crank-Nicholson method.
with explicit boundary conditions for a

an-t-l —a® ] . 1 . )
7 + (u"*%-V)u"’F = ;(a“ +a™ ). in €,

PA P -1
n+1 .)aon _ aon

a" " ''n=0. a ‘1‘=—(._ar o ). on 99).

where the term (u"*2-V)u™*: is defined as Hu-Viu" — LH(u" - V)u""!. On
the boundary, a is determined by the second order one-sided extrapolation of @
in the previous time steps, which is called the Crank-Nicholson method. o™*! at
time t"7! is still determined by a via (2.2.2). and the velocity can be calculated

by (2.2.3).

Remark 2.2.1 As can be seen, if the implicit boundary conditions for the
auxiliary field @ in the momentum equation is adopted. for example. if the implicit
boundary conditions for a is imposed when we solve a by backward Euler time-
discretization

an+l —an

+ n.v n — A n+1 . : Q .
. ~ (u Ju a in
(._.....-)) ' ao'n?l
a"*''n=0, a”lr=— on 9Q.
or
coupled with the kinematic equation
ATl = —V.a™ !, in Q2.

(2.2.6) don+!

; =0. on d9).

on
(2.2.7) utl =a"! + Vol

then by (2.2.3). the relation among the velocity u. the auxiliary field @ and the
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[SV]
S]]

gauge variable o. (2.2.5)-(2.2.7) can be rewritten as

( un-‘rl —un"

7 + (u*-V)u" + Vprt = Aut in Q.
(2:2.8) ] Vourti=0.  inQ.
\u"*‘:O. on 09.
where
, ontl - on ,
(2.2.9) Pt = -+ Lo

which becomes the standard backward Euler discretization of the Navier-Stokes
equations. The convergence of this scheme is straightforward. However, to im-
plement the implicit boundary conditions in (2.2.3). one has to iterate the system
between (2.2.5) and (2.2.6), which is very costly. Extensive computational evi-
dence shows that this iteration is not necessary. and accuracy is still maintained
with the explicit boundary conditions for a in (2.2.1). Our analysis will give a

theoretical insight into this.

2.2.2 Dirichlet Formulation

If we prescribe the Dirichlet boundary condition (2.1.7) of o. the correspond-

ing first order scheme analogous to (2.2.1)-(2.2.3) becomes

an+l —a” ‘

— + (u*-V)u" = Aa™'. in Q2.
5 . At
(2.2.10) oon

a" ln=-"". a"lr=0 on 90

on
A"l = —-V-a™ !, in 2.

(2.2.11)

o™l =0. on 9%).

(2.2.12) ut! =@ + Vot
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[t is only necessary to solve three Poisson-like equations with Dirichlet boundary
conditions. This gives some advantage in the iterative methods for the linear sys-
tem generated by the finite element method [ELG?2]. Similarly. the corresponding

second order method using the Crank-Nicholson time discretization becomes

n+1 n 1 1 1 :
a = + (U V)u"": =A3(a"’l +a"). in Q.
(2.2.13) son  don-! )
avtln = -2 + = a““lr=0. on 99,
in on

along with (2.2.11), which gives us "' at the time step ¢t*~'. and (2.2.12), which
updates the velocity u™*!.

We will show later that this Dirichlet gauge method with explicit boundary
conditions is still stable. Yet, since the lack of the normal compatibility on the
boundary. there are some problems in the expansions of the numerical scheme.

We can only get /At order error estimate. However. it is hoped that this is only
a theoretical difficulty, which will not influence practical computations.
2.2.3 Space Discretization

We will concentrate on the situation when 2 = [—1.1] x [0. 27] with periodic
boundary conditions in the y direction and no-slip boundary conditions in the
r direction: w(z.0.t) = u(z,27.t). u(=1.y.t) = u(l.y.t) = 0. IQ is used to
denote the part of the boundary at r = £1. It is assumed that Ar = Ay = A.
The analvsis of the spatial discretization with standard grids is quite difficult. In
this chapter. we only consider the MAC staggered grids for spatial discretization.
Here the gauge variable ¢ (also the pressure p) is evaluated at the points (i. j),
the gauge variable a (also the u velocity) is evaluated at the points (z = 1/2.j),
and the gauge variable b (also the v velocity) is evaluated at the points (z. j+1/2).

The discrete divergence of @ (also u and u) is computed at the points (i, j):

Qir1/25 — Qi-1/2, + bijr1/2 — bx.;—l/‘z

h h

(Vi-a)i; =
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Other differential operators are defined as: (For brevity. we just write out the
definition of these operators on a. 0. where the same definition can be applied

to u. u and p)

@ir3/2; — 2Qic1y2, + Aoty | Quoyyage1 — 28,2172, F Qi1

ANpa), 10, = ; - .
(Ay )z 1/2, K2 hy h2

bivi +172 — 2bi o120 + by 12 bz = 2bi ji1y2 F 0510
(Dxb)y 12 = B + e .

_ Oix1j — Oi, O +1 — Oy

(oz)x+l/2,j - h - (Oy)x.)-l/") = h

Qyje1f2 = 1(ai+l/2.j +Qicypy T Qg az—l/z.J-s,-x) :

— 1
bisi/2; = I(bi+1,j+1/2 +bici 12 +bi 12 + b1 2) .
Qi+ 3725 — Qi—1/2, — Aye/25+10 — Qig1/2,5-1
-’\fh(u-a)z+1/2.] = Uir1/25 >h + Urs1/2, 2R
bivi 10— b Ry b e — b
- — Flg+1/2 t—lg+1/2 ig+3/2 1.Jj—-1/2
-'Vh(u- b)x.J—:-l/‘_’ = Ui j+1/2 / oY + U172 I+3/ 5

Clearly the truncation errors of these approximations are of second order. The
first nomentum equation (for a) is implemented at right arrow points, the second
momentum equation is implemented at upper arrow points. and the (discrete)
Poisson equation for ¢ is implemented at dot points.

The boundary condition u = 0 is imposed at the vertical physical boundary
['y. whereas v = 0 is imposed by vg;+1,2 + t1,-1/2 = 0. Similarly. the boundary
condition ¢ = 0 is imposed at the horizontal physical boundary ['y. where u =0
is imposed by u,,y/20 + ui-1y21 = 0. Consequently. the boundary condition
a =0.b = —9J,0 at the left vertical boundary is implemented by

O+t — 01, Qo,+1 — Doy
h h '

(2.2.14) a=0. brjs1/2 +bo 12 =

Similar boundary conditions for a are imposed at the other three boundaries.

One of the main advantage of the MAC grids is that the spatial discretization

Alx@n;-l — _vh_an+l . un«"l — an+l + Vhon$l .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N

=1



gives an exact projection
an-:-l =un+l —VhOn-l. Vh.unf-l =0.

and the Neumann boundary condition

ao'n—:—l
on

gives the boundary condition for the normal component of u.

=0. on Jf).

n-u" 7l =0. on dQ.

Therefore we can rewrite the full discrete scheme analogous to (2.2.1)-(2.2.3) in

the following form which will be used in the convergence and error analysis:

an+l — an .
— F Ny(ut.u") = Apa™tt. in Q.
(2.2.15a) At
a"' = —V,o". on dQ.
u**! = a@™t! + V,yont. in Q.
(2.2.15b) Viu'tl =0, in 2.
n-u*tl =0. on Q.

2.3 Spatially Continuous Case for Stokes
Equations

We have already shown the unconditional stability of the gauge method with
explicit boundary conditions in the introduction. Now our theorem of convergence

for Stokes equations is stated.

Theorem 2.3.1 Let (u.®) be a smooth solution of Stokes equations with smooth
tutial data u®(x) and let (upy, da¢) be the numerical solution of the semi-discrete

gauge method with explicit boundary conditions (2.1.10)-(2.1.13). Then we have

(2.3.1) lu — waelli=or.c2y < CAL.
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The convergence proof follows the standard strategy of consistency and sta-
bilityv estimates. We have already proven the stability of the scheme in the intro-
duction. In the consistency part. we first make a transformation of the numerical
scheme. Instead of directly comparing the numerical solutions with the exact
solutions. we compare them with the ones constructed from the exact field. o.
The constructed fields satisfy exactly the boundary conditions in the numerical
scheme. The advantage of this approach is that no error term appears in the
boundary conditions. This simplifies the energy estimates used in the stability
part of the proof.

For simplicity, we just do first order expansions in the spatially continuous
case. In the fully discrete case, second order expansions are required to establish

the a priori estimates needed in the convergence proof.

2.3.1 Truncation Error and Consistency Analysis
We follow the strategy of Strang [STR] in constructing a high order expan-
sion from the exact solutions to satisfy the numerical scheme up to high order.
This will enable us to give a sharper a priort estimate.
By introducing the new variable 4" = a™*! + Vo". we obtained (2.1.14), an
equivalent reformulation of the scheme (2.1.13). (2.1.11). (2.1.12).

Let u.(x.t) and p.(x,t) be the exact solutions of Stokes Equations, i.e.

Oue + Vpe = Du. . in Q.
V-u. =0. in Q.

—_
o
I3
o

u. =0, on Jd0.
and let o.(zx. t) be a solution of the following heat equation with Neumann bound-

ary condition

e = AOe — pe - in Q2.
(2.3.3)

0% =0, on J¥1,

on
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where the initial data o.(x.0) is chosen from the following Poisson equation

A0 (x.0) = p(x.0) +C, . in Q.
(2.3.4)
M —_ O . on C)Q .
on
where ('} is a constant such that C) = — [, p.(z.0) dx to maintain the consistency

that follows from the Neumann boundary condition. Obviously. if we introduce
a. = u. — Vo,. then (a..@.) is an exact solution of Stokes equations in gauge
formulation.

Next. we let u; be a solution of Stokes equations with the prescribed bound-

ary conditions and initial data

6¢u1 + Vp[ = Aul . in Q.
V-ul =0, in Q.
(2.3.5) <
u, = a¢VOe . on df).
\ u(x,0) =0.

By the construction of @.(x.0), we have
(2.3.6) Gi0e(x.0) = APe(x.0) — pe(z.0) =C, . on J02.

which implies that §,Vé.(x,0) = 0 on the boundary. so we can choose u,(z.0) =
0 as in (2.3.35).

Consequently, we let
(.)37) '&1 =u; + Bgae .
and construct approximate profiles

(2.3.8) (7 =u, + Atu, ., "=u, + Ntu, . d=0,.
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Lemma 2.3.1 We have

il O + AVO" = AU™ + Atf". in Q.
(2.3.9a) At

U =0, on J$2.

Un+l — U + V(@" — d"7!) = At’g".  in Q.
(2.3.9b) V.Ul =0, in Q.

n_ n+l

o anq) ) =n-L"!'=0. on 99 .

(2.3.9¢) U9 =ul. in Q.

where f". g" are some bounded functions.

Proof. Substituting (2.3.8) into the equation (2.3.9a) and by direct calcu-
lations. we obtain

U —-rpn
At

= ﬁ'l —u; + AVOH — Aue - AtAﬁl
= (3¢ae - Aae) - AtAﬁ[
= —-AtAu; = O(At). in Q.

+ AVO" — AL™

(2.3.10)

In the last step we used the fact that (u..a.) is the exact solution of Stokes

equations in gauge formulation, i.e.
(2.3.11) da. — Da, =0. in Q.

By the construction of u; and the boundary condition for u,. we have
(2.3.12) u] =ul +da’ =du. =0, on J90,

which shows that

(2.3.13) U =0. on 09 .
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For the equation in (2.3.9b). by direct calculations and Taylor expansions
of U and ¢ w.r.t. time ¢{. we have
Un+t — On + V(" - 1)
= u? + Atdul + Atul + O(At?)
(2.3.14) —ul — Ata] - Atd Vol + O(At?)
= Atd,a? + At(u? — u}) + O(At?)
= 0(At?), in Q.

Since both u,. and u, are divergence free, we obtain
(2.3.15) v-irtt=0. in Q.

and by the construction of our ' and ®. we have

n+l
(2.3.16) a(zn =n-L"!'=0. on 9Q.

Then we complete the consistency analysis of the first order gauge method with

explicit boundary conditions. Lemma 2.3.1 is proven.

2.3.2 Proof of Theorem 2.3.1

We define the error functions
(2.3.17) e"=0" —-u", e"=0U"-u". " = P" —o".

In Section 2.1. by making a transformation. we got (2.1.14). which is an equivalent
formulation of (2.1.13), (2.1.11), (2.1.12). Subtracting (2.3.9) from (2.1.14), we

get the equations for the error functions:

-~n n

e —e

(2.3.18a) At
e =0, on 902 .

=Ae" - VAG"+Atf".  inQ.

et — "+ V(¢" — q"*') = At’g". in Q.
(2.3.18b) V-ent! =0, in Q.
n __ on+l
g —q"") =e""''n=0. on 99.
an
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(2.3.18c¢) e =0. in Q.

[t can be seen that the svstem (2.3.18) is very similar to (2.1.14). except for
the local truncation error terms At f". At’g™. So most of the energy estimate
techniques we used in Section 2.1 can be carried out here similarly. The estimates
corresponding to the local error terms can be given by the Cauchy inequality. We
will omit some of the details in the following analvsis.

Taking the inner product of (2.3.18a) with 2é" and by the fact that e"

vanishes on the boundary, we have

€712 — lle™]|? + lle” — e[| * + 24t || ver|)®

(2.3.19) , , )
< A |12 + At [|@M]]? - 20t /Qe"-V_’}.q" dz .

Taking the inner product of the first equation in (2.3.18b) with 2e*! and

1

using a similar argument as in Section 2.1. i.e.. that e®™" is orthogonal to the

gradient of ¢ — ¢"*!. we arrive at
(23200 [le"T2 — &7 + [lent - &|? < Adflen | + AL g™?.

Combining (2.3.19) and (2.3.20). we get
(2.3.21)
em=t? —fle™]]* + ||&" — e[| + [le"! — &||* + 2A¢t]| Ve

< C AL (jen]]? + (e [2) + AL )12 + lg™?) - 20t [q @V Aq dz.

Similar to the analysis in (2.1.17). the estimate of the last term in (2.3.21) is
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determined by integration by parts and then using the first equation in (2.3.18b).

[ = —2At/ &"-V.\q" dr

Q

= 'ZAt/p(V-é")Aq" dz

= —‘2At/ A(g™ - M) A" d — 2At3/(V-g")Aq" dz
0 [

(23,22 = — A (A7) + A A" — g2
—2At3/(V-g")Aq" dzx
Q
= —At(IAG"THI? - 1A¢7 1) + ALV -] + Alg"]|®

+2At3/(V-é")(V-g")d:c —‘2At3/(V-g")Aq" dz.
Q Q
[t is given by (2.3.22) that

(2.3.23) I < -At([Ag™17 - 1Ag"]1%) + AtliVer||® + A% Agr||®
+2A80[V g7 + A||VEr||? + arllg" |
Going back to (2.3.21), we obtain
(2.3.24)
e 2 — llen(|® + At Ve + At([Agm 2 - [Ag™?)

34

S CAt(lleM? + [le* %) + AL A + CALIF I + lig™ll* + Dtllghli71) -

Applyving the discrete Grownwall lemma to the last inequality. we arrive at the

following result
(2.3.25) lle™|| + At'? |[Ver|| + AtY2 |Ag™ < CAL.

Thus the proof of Theorem 2.3.1 is finished.
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2.4 Spatially Discrete Case for the Full

Navier-Stokes Equations

Theorem 2.4.1 Let (u.0) be a smooth solution of the Navier-Stokes equations
(2.1.1) with smooth initial data u®(x) and let (uy. o) be the numerical solution of
the gauge method (2.2.15) coupled with the MAC spatial discretizations. Assume
the CFL constraint At < Ch for some suitable constant C which we unll specify

in detail later. then we have

Some Notations
For a = (a.b).c = (¢.d), v = (u.v). we define the following discrete inner
products on the MAC grids:
(2.4.2)
N-1 N

(a.c) = h? Z Za,-l/ojch.l/o +h Zzb‘l’l/’d‘l 1,2 .

=1 3=1 =1 j=1

N—-1 N NN
<u th> = /l Z Z u:.._l/zd(o;-[_) o:l Z Z l]-’l/ Ol.}"i-l - oll._]) *
1=1 J: =1 _,:

N-1 N

N N
(Vh-u.o) =h Z(ut+l/2g — Uiy, )oz_) + hz Z(Ll g2 Ui,]—l/ﬁ)éi,] *

1 j=1 =1 3=1

~

~

and discrete norms

(2.4.3) lull = ().l = maxfu,,|

Next we state some preliminary lemmas excerpted from [ELP3] which are

needed in the proof of the theorem.
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Lemma 2.4.1 We have the following
(1) [Inverse inequality:
(2.4.4) il < S0
(it) Powncare inequality: suppose f |;=-; = 0. then

(2.4.3) 1l < ClIIVasll-

(iii) Suppose n-u |;=+; = 0. then we have

(2.4.6) (u.V4o) = ~(Vi-u.0).

(iv) Suppose u | =+ =0, then we have

(2.4.7) 2(u, Apu) < —[|Vau|[? = ||[Vh-ull®.

(v) Supposea |r=:1 =0 and c-n |g--; = 0. then we have

(2.4.8) a. Nu(u.c))| < CllclliVaallllullu= .

Lemma 2.4.2 Let (u. p) be a solution of the Navier-Stokes equations with smooth

inutial data u®(x). Let (ug, po) be a solution of the following system:

Oy + Vibo +Nh(u0.uo) = Apug . in Q.
Vaug=0, in Q.
UQ=0, at r = +1.

| u(.0) =u’().  in Q.

Then (ug.o0y) s smooth in the sense that its discrete dertvatives are bounded.

Morecover. we have

(2410) IIU“'U()”LOC +“p—[)0”[‘1: SChQ.
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Remark 2.4.1 Let ¢¢ be the solution of the following discrete heat equation:

atéo—Ah00+p0=0. in Q2.
ddo
2.4.11 — =0. at r = +1.
(2.4.11) p a
OO('?O) = OO(') . in Q.
and «° is denoted as
(2.14.12) a’ =u’ -V,

Then the solution (ug, @g) of the decoupled system (2.4.9). (2.4.11) is smooth in

the sense that its discrete derivatives are bounded and
(2.4.13) le — uollL= + |6 — ollL= < Ch?.

where (u.0) is the solution of Navier-Stokes equations in the gauge formulation

with initial data u®.

Lemma 2.4.3 Let (u.p) be a solution of the linear system of ODE

( Au + Vpp + Np(uwg. u) + MVp(uw. ug) = \yu + f. in 2,
Vh-u =0 . in Q.
(2.4.14) <
u=g. at = =%1.
| u(-.0) = u°()., in Q.

where f. g. and wg are smooth and satisfy some compatibility conditions. Then
(w.p) s smooth in the sense that its divided differences of various orders are

bounded.

Remark 2.4.2 Once again, let ¢ be the solution of the discrete heat equation

8¢¢—'_\ho+p=0. in Q.
(2.4.15) ,

29:0, ond .

on
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Then the solution (u. @) of the decoupled system (2.4.14). (2.4.15) is also smooth

in the sense that its divided differences of various orders are bounded.

2.4.1 Consistency Analysis of Spatial Discretization with MAC grid
As pointed out in Section 2.2. the numerical scheme can be written in the
form of (2.2.15) for the convenience of our analyvsis. Similar to the spatially

continuous case. if we introduce 4" = a""! + V,0m. (2.2.13) is equivalent to:

(2.1.16a) U U L Ma(u™ u”) + DpVao" = [pB". in Q,
Z.-t. a
u” =0, at r==+l1.
utl — " + Vy(o® — o) =0. in Q.
(2.4.16b) Viurtt =0. in Q.
(o™t — o ,
(—'31"_‘):‘".-11"?1:0. at r==1.

\We note that (2.4.16) is almost a discrete version of (2.1.14). except for the

appearance of Ny (u™, u"), a nonlinear term.

Let ug(zx.t). og(x.t) be solutions of the decoupled system (2.4.10), (2.4.12).
which are guaranteed by Lemma 2.4.2 and Remark 2.4.1 to be smooth in the
sense that the divided differences of various orders are bounded.

Next. we denote u)(x,t) as the solution of the following svstem

( Suy + Vapr + Na(ug. uy) + Np(uy. ug)

= Ahul + atAhao g %é)fao R in Q.
{2.4.17a) <
Vh"ul =0 . in €7.

| %1 lz=21= Ot VrOg |r==1 -
with suitable initial data for u,, and let o,(x. t) be the solution of the following

discrete heat equation

o1 — Apoy +p =0. in Q.
(2.4.17b) )

% =0, on d Q.

an
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with suitable initial data for ¢;. We know from Lemma 2.4.3 and Remark 2.4.2
that (2.4.17) has a smooth solution.
Let u,(x.t) be the solution of the (spatially) discrete Stokes equations with
the prescribed boundary condition and some suitable initial data
Ous + Vipps = Opu,. in Q.
(2.4.18) Vi-uy =0. in Q.
U [z=21= (507 V40o — Oty + G,V ,01) |z=21 -

Subsequently, we let

(2.4.19) @ = u, + dao.
and
~ | .
(2.4.20) Uy = Ug + a'at"ao + dyuy — achol .

Now we construct
U™ = ug + Atay + Nt .
(2.4.21) U™ = ugp + Atuy + ONt2u, .
¢" = gy + Ato, .
and substitute them into (2.4.16). Similar to the computations and arguments in
the spatiallv continuous case and doing Tayvlor expansions of u, and V0o w.r.t.

time t. we obtain

(2.4.22a)

.n— L.n r - 2 .
(—E"— +Nh((/m, Um) + '.\,,V,,@" = AhL’m + At "fn . in .
{""=0. at = =%l,

Un+l U 4 Ua(d" — d°1) = Atlgn . in Q.
(2.4.22D) Va-U™l=0. inQ.
opn+! .
=n-U"'=0. at r=+1.
an
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where f" and g" are bounded and smooth if (ug.og) is sufficiently smooth. It
can be seen that the only difference between (2.4.22) and (2.4.16) is the higher
order truncations error terms At2f*. At3g™.

[t is obvious that

(2.4.23) max_|[U"()|lwr=x < C*.

0<tn<T
Under the compatible condition
(2.4.24) OV roo(z.0) =0. on Q.
we can choose
(2.4.25) u(z.0) =0.
Then we have a second order approximate initial data
(2.14.26) U%(x) = ug(x.0) + At*w'(z) .

where w' is a bounded function.
2.4.2 Convergence Proof

Assume a priori that

(2.4.27) Jmax [luiwie < C.

In the following estimate. the constant will sometimes depend on C* and C. We

define

(2.4.28) e"=U"—-u", e"=0U"-u", q" =d" - o".

The following svstem of error equations is obtained by (2.4.22) and (2.4.16)

(2.4.29a)
e" —e" . 5 2 i
T + Af,,(e". ™) +Nh(u", e") + ViDng" = dpe” + At f" . in Q.
e’ =0. at r = £1.
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el — " + V,(q" — ¢" ') = Atg". in
(2.1.29b) Vi-e*™ !l =0. in 2.
o n+1 _
qa =n-e*=!' =0 at r = xl
n
(2.4.29¢) e’ =At? w. in Q.

The system (2.4.29) is similar to the syvstem of the error equations for the
spatiallv continuous Stokes equations. (2.3.18). At the first glance. (2.4.29) is
almost a discrete version of (2.3.18). Then most of the techniques used in Section
2.3 can be applied here. Moreover, there are also some differences: the appearance
of nonlinear error terms AV, (e", U™) and MV, (u™. €"). and the local truncation error
terms appearing in (2.4.29) are of higher order than those of (2.3.18). We make
higher order expansions in the spatially discrete case so that we can establish the
171> estimate for the numerical u™. This estimate is needed for nonlinear error
terms so that part (v) of Lemma 2.4.1 can be applied. By making higher order
expansions as we did in the consistency analysis part. the only thing we need to
do is to apply the a prior: estimate (2.4.27).

Taking the inner product of the equation in (2.4.29a) with 2e". we obtain

le™]]? —lle™]|? + ||e" — e™]* — 24t (€7. A4é")
(2.4.30) < A2 + At |72 - 240t (8™, Ny(er.L™))
=24t (€. Ny(u™. e™)) — 2At (€". Vi Arq™) .

By Lemma 2.4.1. parts (iv) and (v), and the a priori estimate (2.4.27). we get

€™ — lie™l* + 1" — e™]|* + At[|Vae™||? + At[[Va-&™|?

41

S AL+ CAt(llen]]? + lletl]?) + 3Ot IVa™I[? - 24t (€7 Vadagh) .

Once again. as can be seen. to use Lemma 2.4.1(v). we must have an a priori
estimate (2.4.27). This requires us to do second order expansions in the spatially

discrete case.
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By the triangle inequality for the discrete L? norm
(2.4.32) le*]} < lie” — e[| + ile]l.

we have

e*|? — lle]|? + glle” — e||* + At [|[Vae™|* + At[|Vy-e7f?

S A2+ COter||? + At [[Vie||? — 20t (€. Vadag™) .

(2.4.33)

Taking the inner product of the first equation in (2.4.29b) with 2e”*! and

applying Lemma 2.4.1(iii) vields
(2431) eI &) + flenT! — &|* < At e + Ar7lg

Combining (2.4.33) and (2.4.34). we get
(2.4.33)
e Hi? = lle*)|® + gl —e™||? + [le"*' — &"||” + {2t Vae™||* + At||Va-&€M|[?

< AL + 119717 + C At(ller]]? + [[e*!]?) — 24t (€. Vadng™) .
Estimating the last term in (2.4.33) is similar to (2.3.22)

[ = —20H&", Va2rq")
= 2AH(V4-€". Ang™)
= 2AHAL(gV — ¢*). Ang") — 20tH Vg™ Mig")
(2.4.36) = —At([|Arg" 1% — [|Akg™]1?) + At Ar(g™" — gM))|?
=241V, -g", Ang™)
= —Ot([Arg™ |2 = [[Ang™ 1) + At Vh-e™[* + AtT|g]| 2
2NtV 48", Vi-g") — 2AH(V4-g™. Aaq™) .

Then (2.4.36) gives us

I < =A™ 12 = [[Arg™I1?) + At Va-&™[|* + At Ang"||?

(2.4.37) , )
+2AL|Vh-g™]12 + AL3||Va-&"2 + At|Ig"]|2 .
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Going back to (2.4.33), we obtain
(2.4.38)
le™=HI? — lie™? + 3[IVae™||? + At(|Ang™ ' 1 = | 3ng™]]?)

< COt(jler|? + [|en*H|2) + AP Ang™||? + CAL (£ + ilg™ll* + Atllg™l7) -

Grownwall Lemma gives
(2.4.39) lle™|] + Lt]|Vre™ || + At 2| Arg™ |+ < CLAL?.

By the inverse inequality (2.4.4) we have

) At?
(2.4.40) lle™lL= + hlle™lurs + At Ahg" L= < CIT .

Under the CFL constraint

1
(2.4.41 At < ] — .
( ) < ‘/CI JAY o

where ') onlv depends on the exact solution (ug.®q) and the a priori constant

C for the estimate of |[u™|[yy-1.= in (2.4.27). we have
(24-1.2) He"HHLx S \/C[At ”en‘l”u'l.x < l.
Therefore in (2.4.27) we can choose

(2-1-13) C=1+ ma;x] ”L'n(')”u'l.x .

nS[E

such that C depends only on the exact solution (ug. o). This gives
(2.4.44) lwo — wnlle= < CAL.

By Lemma 2.4.2. we have

(2.4.46) lw — unllr= < C(DE+h?).

This completes the proof of Theorem 2.4.1.
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2.5 Analysis and Error Estimate of the
Dirichlet Gauge Formulation

Finally we look at the gauge method with Dirichlet boundary condition for
0. For simplicity. we will concentrate on the spatially continuous case for Stokes

equations:

an—.-l a’ _ Aan+1 . - Q .
o n+1 a@n n+l

a n=-a- a" 'r=0. on J9N .
and
(2.5.2) Attt = —V.a"7!. in Q.
2.0.24

o™l =0, on 99 .

(2.5.3) u'tl = a™*! + Von+l )

Next we state our theorem for Dirichlet gauge formulation:
Theorem 2.5.1 Let (u.®) be a smooth solution of Stokes equation (2.2.1) with
smooth nitial data u®(x) and let (up,. ©a,) be the numerical solution for the
semi-discrete gauge method with Dirichlet boundary condition for the gauge vari-

able (2.5.1)-(2.5.3). Then we have

(23—1) Hu - umHLoc(o.T;,_:) S C\/ At .

The analyvsis carried out in Section 2.2 can be applied to this formulation
similarly. First we make a transformation. If we introduce u" = a""! + Vo".

(2.5.1)-(2.5.3) can also be reformulated as

~n n

At
u" =0, on df).

+ AVe™" = Au". in Q.

(2.5.5a)
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uné—l_ﬁﬂ_{_v(o"‘_o"“):o. in Q.
(2.5.5b) V-u"tl =0. in Q.
(6" — o™ ) =0. on 990 .

Note that (2.5.3) is the same as (2.1.14) except for the boundary condition for o.
\We will repeat the procedure in Section 2.2: let u.(x.t). p.(x. t) be the exact

solution of the Stokes Equations

oue. + Vp, = Au, . in Q
(2.5.6a) V-u,=0. in Q.
u. =0, on J9) .

and let o.(x. t) be a solution of the following heat equation with Dirichlet bound-

aryv condition

010 = Ne — Ppe - in Q.
(2.5.6b) e P
o. =0. on Jf2.

However. there is some trouble when we tryv to construct uw, in the expansion
of the numerical scheme. As can be seen. (2.3.3) does not necessarily have a
solution in the Dirichlet gauge formulation. Since 3,V ¢, is not orthogonal to the
normal vector at the boundary, this leads to the incompatibility of the boundary
condition for u;. Yet, to continue our analysis, we can still construct an arbitrary

field w, such that

(2.5.7) u, =, Voe.. on 909).

-

We still adopt the notation in 2.3: let u; = u; + d,a.. and construct
(2.5.8) " =u, + Atu,, U=u,+ Atu, . b =o0,.
It must be mentioned here that U is not divergence free up to an order O(At)

(2.5.9) V-U = Ath, where h=V-u,.
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This fact will reduce a /At factor in our estimate as we can see later. Using

sirmilar arguments as in Lemma 2.3.1. we have the following svstem analogous to

{2.3.9)
E;__:E_+Ach" =AU - Atf". in Q.
(2.5.10a) at
U=" =0. on 0f).
( 2 ;
L+l _U""_{._V((I)n -—(I)""l) :At"g". intl.
J V-Un = Ath™! in Q.
(2.5.10b)
(b"_(bn*_l:o, onaQ.
LU°=u°+Atw°. in Q.

where f*. g". h**! and w° are some bounded functions.

Using the same notation as in (2.3.17)
(2.5.11) e"=0" —u". e"=U"-a". " =P" — o,

and subtracting (2.5.10) from (2.5.5), we get the system of error equations:

At
e" =0, on JN.

(2.5.12a)

{ € € _NE VA +LALf.  inQ.
,

el — "+ V(q" — q"!) = At?gn. in Q.

V-e"tl = Ath™*!. in 2.
(2.5.12b) )
q" —q*tl =0, on 99 .

\e°=Atw°, in Q.

We will continue to do energy estimates as in Section 2.2. Applyving the
same procedure. taking the inner product of the first equation of (2.5.12a) with
2e" we get:

18112 = llem||> + [[e* — e + 2t [ ve™|*

(2.5.13) s - n
< AL IFM2 +C At e - 20t /Qe Vg dx .
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Taking the inner product of the equation of (2.5.12b) with 2e™*! vields

ller™H|2 — &™) + lle"*! — &™)}

(2314) <At”en+l”2+At3” n 2_-)/ "’l-v n_ gl d
< gt -2 [ V(" - g da.

Next. we estimate the last term of the right hand side. which is caused by the

fact that U™ is not divergence-free:

[l = _Q/Qen-é-l_v(qn _ q""l)dz — 2[}(v_en—l)(qn _ qn‘:.l)d:l!

(2515) — QAt/s;hn-é-l(qn _ qn+1)dz
< CAPR™ T2 + Cillg™ — ¢
Since ¢ — ¢"~! = 0 on the boundary, by the Poincare inequality, we have
lg" — ¢""H|1? < Col|V(g® — g™ M)||?
(2.5.16) < Coll(en*! — &) + At?g||?
< 3Cuflert — &2 + CAr g2,
Since we can always adjust Cy such that C,C, < % (2.5.14)-(2.5.16) gives
lem=l12 — &2 + dflen+! — &2
< Atlem | + CAFIR + AL g2
The estimates in (2.3.22), (2.3.23) are still valid here. Finally we obtain
e 2 — llet]|? + At Ver |2 + At(|Ag™ 12 — [[Ag™|1*)
(2.5.18) < Cat (e + ller!?) + A Agh||?
+CALR™ 2+ CAL (I FM1? + llg™l? + Atlig™ll3:) -
Applyving the discrete Grownwall lemma to the last inequality. we arrive at

(2.5.19) lie™|| + At'/? |[Ver|| + At'? |Ag]| £ C/At.

where only the /At error estimate for the velocity field is available. Theorem

2.5.1 i1s now proven.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47



48

CHAPTER 3
ANALYSIS OF SECOND ORDER SCHEME

3.1 Preliminary

The 2-D Navier-Stokes equations in vorticity-stream function formulation
read:

ags’.b' + V'('ll(.d) =vAw.
(3.1.1) AN =w,

with the no-slip boundary condition written in terms of the stream function w:

o ’ dv
(3.1.2) v =0. 5;=0.
Here w = (u. v) denotes the velocity field. « denotes the vorticity.

Many finite difference schemes, e.g.. [QL]. [ELV'l]. [EL\2]. have been pro-
posed to solve (3.1.1), (3.1.2) numerically. The main difficulty and confusion of
straightforward discretizations of (3.1.1) and (3.1.2) includes two points: there
are two boundary conditions for stream function in (3.1.2). while on the other
hand when we time march vorticity in the dvnamic equation. there is no definite
boundary condition for vorticity (see [QL]). The methodology we employ to over-
come this difficulty is to solve for the stream function using Dirichlet boundary

condition ©* = 0 on [. and then compute the vorticity at the boundary from the

stream function via the kinematic relation and no-slip boundary condition.
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The subject of vorticity boundary condition has a long history. going back
to Thom's formula in 1933. See [THOM]. [OI1]. [QL]. [ELV'1]. Recently, an
efficient explicit time stepping was proposed by E and Liu in [ELV'1]. which is
very suitable for unsteady flow at high Revnolds number.

The convergence analysis of this subject has attracted considerable atten-
tions recently. For example. the 2nd order scheme with Thom's formula on the
boundary was analyzed by Wetton and Hou in [HW]. It was always veryv con-
fusing that Thom's formula still achieves full 2nd order accuracy even the formal
Tayvlor expansion of it only indicates 1st order accuracy of the vorticity on the
boundary. Their analysis resorts to Strang type high order expansions. which
are quite complicated. A technical assumption of one-sided physical. one-sided
periodic boundary condition was imposed.

In this chapter. we perform a simple. clean analyvsis of the second order
scheme with Wilkes™ formula for the vorticity on the boundary. As we can see.
both centered difference. which is used at interior points. and the boundarv con-
dition for vorticity give us 2nd order accuracy. This fact is reflected in our paper
that our consistency analysis is more straightforward. no Strang tvpe expansion
i1s needed. Yet. people are always doubtful about its stability. since it involves
more interior points than Thom'’s formula. [n fact. direct calculations and stan-
dard local estimates cannot work it out as we can see later. We overcome this
difficulty. which comes from the boundary term. by adopting a new technique:
applying Cauchy inequality to bound local terms by some global terms, then ap-
plying discrete elliptic regularity to control the global terms by the diffusion term.
which therefore guarantees the stability of Wilkes' formula. The combination of
the consistency and stability leads to the convergence of the scheme. as we can
see in our main theorem. The physical no-slip boundary condition on both sides

is imposed in our analvsis.
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In Section 3.2 we describe our second order scheme for 2-D NSE with a
{0.1] x {0.1] box for the domain. Then. in Section 3.3. we give the detailed
stability analvsis of Wilkes™ formula in the case of linear Stokes equations. In
Section 3.4. we show the convergence of the second order scheme with Wilkes’
formula. In Section 3.5, we give the numerical accuracy check for both Thom's

formula and \Wilkes’ formula.

3.2 Description of the Second Order Scheme

We look at Navier-Stokes equations in 2-D when no-slip boundary condition
is imposed on both sides. For simplicity of presentation. we take the computation
domain as 2 = [0.1] x [0, 1] with grid size Ar = Ay = h. The no-slip boundary
conditions are imposed at {y = 0.1} and {r = 0.1}. denoted by [, and I,
respectively. The associated numerical grids will be denoted by {r, = i/N.y; =
J/N. i) =0.1.--- . N}. At these grid points. NSE can be discretized by standard

centered difference formulas:
Oww + Bz(uw) + By(zw) =vQpw.

u=—-D,u, v=D;v,

where D,. D, are the centered difference operators

99 - ~ Uirly — Ui-1y = Uy el — Uy i
(3.2.2) Druz._y = : Dyul.J =

2h 2h
and 4, is the standard 3-point Laplacian A, = D? + Dg. where

ui.]—l - 2”’1._} + ul.j‘.'l

h?

. Uy y., — 2Ui 7 + Uiy .
Q29 2 _ 1—-1.7 1,7 +1. 2 _
(3.2.3) Diu,, = P - D, =

As we pointed out in the introduction. there are two boundary conditions for

t'. The Dirichlet boundary condition v = 0 on [ was implemented to solve the
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stream function via the vorticity as in (3.2.1). Yet the normal boundary condition.
};—i = 0. cannot be enforced directly. The way to overcome this difficulty is to
convert it into the boundary condition for the vorticity. As we can see. by the
fact that v [r= 0. we have the approximation for the vorticity on the boundary

(savonTl,.j=0)

1 v 20 — Ui
RID) v —_ 2.0 —_ {7 IR — el P L N Lt
(3_4) i = Dyl’/,_o = hz(b,.l : L,,-[) 12 h 2R

where (—1) refers to the "ghost” grid point outside of the computational domain.

If we take =4222=L = (. which implies that v_; = v,. as a second order normal

boundary condition for (9,¢);p = 0, we arrive at Thom’s formula
2‘U'1_1

(32-)) &Wio = 5 -

h

\We should mention here that by formal Tavlor expansion. Thom's formula is
only first order accurate for «w on the boundary. More sophisticated consistency
analysis can guarantee the scheme is indeed 2nd order accurate. which was first
proved in [HW].

The vorticity on the boundary can also be determined by other approxima-
tions of v'_;. For example, if we use a 3rd order one-sided approximation for the

normal boundary condition (9y¥)io =0

- + 31//'1',1 - %7&/’:,2 ; 1
= =0. Uy -1 = 314'1.1 — 2.

3h 9

(3.2.6) (Gyt o =

and plug back into the difference vorticity formula w;o = #r(vy1 + wi-y) as in
(3.2.4). we have Wilkes-Pearson’s formula

1 1
wWio = p(*‘t‘x.l - 3‘Ui.2)-

(3.2.

=1
~—

See {PT] for more details. This formula gives us 2nd order accuracy for the

vorticity on the boundary.
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The scheme (3.2.1). along with the vorticity boundary condition we men-
tioned above. either (3.2.5) or (3.2.7), can be implemented very efficiently via ex-

plicit treatment of the diffusion term and 4th order Runge-Kutta time-stepping.

3.3 Stability of Wilkes’ Formula for Stokes
Equations

One of the main concerns in the computations of Navier-Stokes equations
are numerical stabilities. For simplicity, we only consider Stokes equations in this
section. where nonlinear terms are neglected. The second order scheme applied

to Stokes equations corresponding to (3.2.1) will turn out to be

Ow = v pw ,
(3.3.1) t R
ADpy =w, v lr=0.
and either Thom's formula (3.2.5) or Wilkes’ formula (3.2.7) can be chosen to

implement (3.3.1).

Now we introduce some notations.

Notation. \We will use the discrete L*>-norm and the discrete L?-inner product

(3.3.2) Null = (u. u)'/?, (u, v) = Z u,, v, B2

i<ig<y-—-1

For u |r= 0. we introduce the notation ||V,uj| by

No1N-1 N1 N-1
(3.3.3) IVaul? = 3 3" (DFui)?h + 3 3 (D] uiy)?h?.
=1 =0 1=1 =0
where D7 u. D u are defined as
(3.3.4) Diu,, =22 "0 pey o DrlZ g

h h

First. we look at the stability argument of Thom's formula, which is straight-

forward. For Stokes equations, the stability analysis can be described as following:
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multiplying the equation in (3.3.1) by —u we have —(v.dw) + (L. Dpw) = 0.

The first term is exactly

| &

IVae.

N o—
Q.

(3.3.5) —(v. Ow) = —(¥. 0Dpu) = ;

where in the second step we used the fact that v vanishes on the boundary. The

second term can be estimated via summing by parts
(3.3.6) (v. Apw) = (Dpe.w) + B = ||| + B.

where we used the fact that Apv = w, and the boundary term B is decomposed
into four parts: B =B, + B> + B; + B;
N-1 N-1
B, = Z Uiwio, Ba = z LTS T\

i=1 =]

(3.3.7) N—1 N1
B; = z U e, - By = Z UN_1 Ny -
j=1 J=l1

As we can see. to ensure the stability of the scheme. an estimate to control
the boundaryv term B is required. For simplicity of the presentation. we only
consider B; here. The other three boundary terms can be treated in the same
way. We apply Thom's boundary condition (3.2.5) to recover B,

N-1 ?‘U;—)l

N-1 N
(3.3.8) Bi=Y w3t = > 0.

h?

i=1 i=1
The other three boundary terms can be treated in the same way. Then we have
the estimate B > 0. whose substitution into (3.3.6). along with (3.3.5) gives us
the stability of the second order scheme (3.3.1) with Thom's formula (3.2.5). This
observation was first made by Meth in [MKZ]. It was also used in [HW] to prove
the convergence of Thom's formula.

As we can see. Wilkes’ formula (3.2.7) involves more interior points than

Thom’s formula (3.2.3). A natural question arises: is Wilkes' formula stable?
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We follow the procedure above. As we can see. (3.3.5). (3.3.6) are still valid.
The only difference is the boundary term B. which is still represented as in (3.3.7).
Similarlv. we only consider B, here. Here. Wilkes' boundaryv condition (3.2.7) is

applied to recover B,
Q- L Vi, .
(3.3.9) B, =) — (e = sen).

However. a direct calculation cannot control B;. since two interior points ¢, and
v of stream function are involved in Wilkes' formula. So the straightforward
argument (3.3.8) does not work here. To overcome this difficulty. we can apply the
property that ¢ vanishes on the boundary and then rewrite the term 4u;,; — %wi,g

as
. 1 Ly
(3.3.10) 4wy — iz = S 5’1 D,y .

The purpose of this transformation is to control local terms by global terms as
we can see later. Now B can be estimated via applying Cauchy inequality for

‘)
Lt D;L'z.l

) Wiy 1., 5
BI = ; —52—(3011 - §h-D;L"1.I)
Vol 32 1 12 1.
9 il p i N2, 2,2
(3.3.11) > Zl( 2 - 2—,1'.2‘,)21.-/«','2_1 - §|Dyl~”1.ll h=)
.'\"—ll 9,9
=1 =
where we used the fact that 3 — %é—z > 0 in the last step. Repeating the same

argument for B,. B3 and B;. we arrive at

(3.3.12)
1 2 2 2 2\1.2 1= 2. 2, 2 2\;.2
B> -5 Z; (|DyL‘:.ll - ID.,U:'.N—ll Yh® — 5 Z(ID:ULJI R IDI'L'.\'—L], )h
= o= - ]:l

Lo o Loy o
2 —5lIDzvll = 3Dyl
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As can be seen. the transformation (3.3.10) and the application of Cauchy
inequality helps us to bound the boundary term. which is a local term. by global
terms {[D7cf|? and [[DZw||?>. Our next aim is to control the terms ||D2w||* and

| D;ul? by |lw]]? appearing in the diffusion term. The following lemma is resorted.
Lemma 3.3.1 For any v such that v |[r= 0. we have
(3.3.13) | D2l + 1D < (D2 + DY)l = fl?

Proof.  Since v, is zero on I', we can take Sine transforms for {v;;} in
both i-direction and j-direction, i.e.,
(3.3.14) viy = Y Ury sin(kwz;) sin(éxy,) .
k.€
Then Parserval equality gives
- 2 - 2
(3.3.13) Z(wi.j)’ = Zlh”k.z‘ .
.J k€

[f we introduce

S SN
(3.3.16) fr = —/—ﬁsm'( 5

4

). gg-————ﬁsin'”’( —).

l’i‘
>

~
lv':l

we obtain the Fourier expansion of D2y and D:L’

Div,, =3 fiteysin(kmr,)sin(€ry,) .
k.l

(3.3.17) | ;
Dju',,] = Z gt Uy sin(kmwr,)sin(fry,) .
k.l

which implies that

(3.3.18) S lw, P =30 1000i P = 30 19 + fil® ekl
r.) t,J k.€
Since fi < 0. g¢ < 0. which indicates that (fr + g¢)® > fZ + g7. we arrive at
(3.3.20) 2l l® 2 2R + g weel® = 3_(IDFwn, I + |Dju, ) -
(] k.l 1]
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which shows exactly (3.3.13).
The combination of Lemma 3.3.1 and (3.3.12) gives us that B > —;i—”w“"’.
Plugging back into (3.3.6). along with (3.3.3). we have the stability estimate of

the second order scheme with Wilkes” boundary condition

1d , 1 R
(3.3.20) s IVael” + svlell” < 0.

Remark 3.3.1 The purpose of Lemma 3.3.1 is to control L? norms of D2 and
Dﬁt by the discrete Laplacian of ¥, which enables us to control local terms by
the global diffusion term. In fact it is a discrete version of the elliptic regularity

for (discrete) Poisson equation.

Remark 3.3.2 Let’s review our stability analvsis for Wilkes™ formula. The
main difficulty comes from the boundary term. Our trick is to rewrite it via
the boundaryv condition for vorticity. therefore convert it into an expression in
terms of ¢ near the boundary. Next, we apply Cauchy inequality to bound it
by [DZc||? and ||DZ||>. Then we can apply an estimate like (3.3.13). control
| Div||* and ||Du||* by |lwl|®. which leads to the bound of the boundary term

by the diffusion term.
This methodology is quite general. The original idea of it was proposed in

[ELV2] to show the stability of a fourth order method. We will use it in the next

chapter to study higher order vorticity boundary conditions in {-th order scheme.
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3.4 Analysis Of Second Order Scheme for 2-D
NSE

\We state our main theorem in our paper.
Theorem 3.4.1. Let u, € L>=([0,T); C>*(2)). v.. «. be the ezact solution of the
Navier-Stokes equations (3.1.1), (3.1.2) and uy. < be the approrimate solution
of the second order scheme (3.2.1) with Pearson- Wilkes formula (3.2.7). we have
(3.4.1)
e — wn|lL=go.1).L2) + VVIlwe — whllL2o.1).2)

< Ch")||UeHLx([o.T].C5-o)(1 + ||ue||Lw([o,T],C3))exP {%(1 + ”“e”ix({()f}.(‘lﬂ} .

In the convergence proof, we follow the standard procedure of consistency,
stabilitv and error analysis. Difficulty in the consistency analysis arises from
the fact that centered difference is used at the interior points. while one-sided
formula is used for the vorticity on the boundary. This difficulty is overcome by
our construction of an approximate vorticity through finite differences of the exact
stream function. All of the truncation errors are then lumped into the momentum
equation. Since \Wilkes' formula is second order accurate on the boundary, we
can avoid Strang type expansion. This results in an easv consistency analyvsis
near the boundary. which shows that the error function for the vorticity on the
boundary is of order O(h?). The stability of Wilkes’ formula has already been
established in Section 3.3. Our error analysis follows the strategy and arguments

in Section 3.3.
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3.4.1 Consistency Analysis
Let ¥, , = ve(r,.y;) for -1 < 7.5 < :V+1. (here we extended v, smoothly to
[—0.1+04]%). and construct U, V", Q through the finite difference of ¥ to maintain

the consistency. especially near the boundary.
(3.4.2) (,,=-D,V¥. Viy=D.¥. Q. ,=0¥. for0<ij<N.

Then direct Tavlor expansion for v, up to the boundary gives us that at

grid points (r,.y,). 0 < .7 <V,

h2
U= ue = =5t + O(R%)|lellc: -
2
(3.4.3) V=Q+%@%+OMW%Mw

h? .
R = e+ 55(88 + B + Ok leellcs
[t is obvious that at these grid points, (including boundary points}
(3.4.4) U = te] + [V = ve| + |2 — we| < CR||we(--t)]lcs -

Now we look at the local truncation errors. \We will show that the con-
structed L. V7. Q constructed in (3.4.2) satisfv the numerical scheme (3.2.1).

(3.2.7) up to O(h?) error. First we look at the diffusion term. (3.4.3) indicates
(3.4.5) DRQ = Apwe + OB fjvelles -

which along with Tavlor expansion of w, that

(3.4.6) Dpie = Dwe + O(h?)||wellcs = Awe + O(R?)||[%ellcs -

leads to the estimate of the diffusion term: at grid points (z;.y,). 1 <i.; < V-1,

(3.4.7) AR = Aw, + O(R?)[fee- )]l cs -
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The nonlinear convection terms can be treated in a similar fashion. (3.4.3)
implies that at grid points (z;.y;). 0 < i, 7 <.V,

) h2 h'z
(3.4.8)  U'Q = tw, — —wO 0, +

6 <% E“e(a“‘ + e + O | velleslleelles -

z y

which leads to the estimate at interior grid points (r,.y,). 1 < i <NV — L.

BI(L;Q) = D-—1'(1113'3‘-}8) - ‘}16—“51'(“"8831*'8)
h2 = 2 |
(3.4.9) + 15D (ue(@ + G)ue) + O fuelleleelics

= Di(uewe) + O(h?)||vellesllwellcs -
Moreover. Tavlor expansion for u.w, gives D, (uewe) = 0z (tewe) +O(R*) | uewellca.

thus

(3.4.10) D:(uewe) = Bz (tewe) + O(h)|tellcsllwellen -
Then we arrive at

(3.4.11) D (UQ) = 8z(uewe) + O(R?)||tellesllwellcs -
The similar result can be obtained for Ey(VQ)

(3.4.12) D,(VQ) = 8, (vewe) + O(h?)||welleslwellcs -

Next we deal with the time marching term 8,Q2. The strategy here is to

control the difference between 9,9 and d,w. by O(h?) of ||8,t ||+
(3.4.13) 0 — Qe = DaOi¥e — DO = (Dn — D)Oyte = O(h?)||Dwellcs -

Yet. to get an estimate of [|dite||cs. we have to apply Schauder estimate to the

following Poisson equation

{ A(aglﬁe) = at(.de s inQ,
(3.4.14)

Qe =0. on [,
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which gives us that for a > 0.
(34.15)  [ldcellern < Cllduwellcza < Cllleellnn + fleelicns e llena) -

where in the second step we applied the exact vorticity equation that diw. + u.-

Vae. = vOs,. The combination of (3.4.13) and (3.4.15) gives us
(3.4.16) 8,9 - duwe = OB ([Eellcon + leelicnalleficss)

Combining (3.4.7). (3.4.11). (3.4.12) and (3.4.16). and applving the original

PDE of the exact solution that Gy, + V- (uewe) = vAw,. we conclude that
(3.4.17) 3 + D(L'Q) + Dy(VQ) = AsQ + O(R) | Uellcsa (1 + [Jrelles) -

which verifies our claim.

Finally we look at our constructed Q on the boundarv. Our aim is to show
that Q satisfies Wilkes’ formula applied to ¥ up to an O(h2) error. The verifica-
tion of it is straightforward. We only consider I';. j = O here. The other three
boundaries can be dealt with in the same way. One-sided Tavlor expansion for

¥ in the y-th direction near the boundary shows that

1 1 . 5
—HY, - ;‘I’z‘.z) = ajl,é'e(r,.O) + O(h7)[lvelles

(3.4.18) h?

= we(z:.0) + O(h?)||wellce -
On the other hand. (3.4.4) gives us that the difference between (2,3 and w.(.r,.0)

on [, is also of order O(h?)||we[|cs. then we arrive at

1 1 o
(3.4.19) Qo= ’-13(4‘1’1'.1 - §‘I’x‘,2) + O(h)|[welles -

Thus the consistency analyvsis is completed.
3.4.2 Error Estimate
For 0 <i.j < N. we define
(3.4.20)

Lyy = Ly — \Ilt,j . N e N Qi.j s Ui j = Uy, — Ll.j . Uiy = Uy, — "l._] .
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Then the above consistency analysis gives the following svstem for the error

functions

!

0z + Do(EQ + ud) + Dy(TQ + v2) = vl + f .

3

(3.4.21) R = 3. vlr=0.

>

1]

=-Dyw. ©=D.v, Zlr,=0. |, =0.

where | fi < Ch¥|luellcs.a (1l + |[uellcs). On the boundary. (say at [;. j = 0) we
have

(3.4.22) Do = h—l,_,(4fu3.-,1 - %&,-,2) + hle, .

where je,| < Clluglics. (3.4.22) comes from Wilkes™ formula (3.2.7) and our
estimate (3.4.19). In other words. the error function of vorticity and the error
function of stream function satisfy Wilkes’ formula up to an O(h?) error.

As we can see. the system (3.4.21), (3.4.22) is very similar to the second order
scheme (3.2.1) along with the Wilkes’ formula (3.2.7) except for the error terms
f and h”e. In other words. as we showed in the consistency part. the constructed
solutions satisfy the numerical scheme except for some local truncation errors. We
have already shown the stability of the scheme in Section 3. so we can apply the
same procedure to estimate the error functions. The error terms corresponding
to f and e can be estimated by Cauchy inequalities.

Multiplying the vorticity dynamic error equation in (3.4.21) by — . we have
(3.4.23) = (. 9W2) + (. An) = (w. D (#Q + ud)) + (v. Dy (FQ + vZ)) — (. ) .
The first term. which is corresponding to time evolution term. can be dealt with

in the way as in (3.3.5) since v also vanishes on the boundary. i.e.

- - ~ ld ~ .
(3.4.24) ~(v.0:3) = =(v. 8 Dyw) = S IVa|?.

The term —((j‘.f) can be controlled by standard Cauchy inequality. Then the
rest of our work will be concentrated on the estimates of the diffusion term and

the convection terms. We will resort to Lemma 3.4.1 and Lemma 3.1.2 as below.
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Lemma 3.4.1 For sufficiently small h, we have
. - -~ ~ 1 ~112
(3.4.25) (v. DpZ) > ;Hw”‘ -

Proof. Our proof of (3.4.25) follows the procedure of stability analyvsis in

Section 3.3 Summing by parts and using the fact that ¢ |r= 0 gives us
(3.4.26) (U. &pZ) = (0. (D2 + D)@Y = (D?u. 3) + (D2v.Z) + B = ||Z]* + B.

where the boundary term B can also be decomposed into B = B, + B, + B3 + B,

as in (3.3.7)

N-1
Blzzbuu;o B? be\_lw‘\
(3.4.27) =t ) =
By= S Gugdn, Bi= X Oxoisdv
=1 =1

The estimate of B, is also similar to that in Section 3.3. The only difference
here is that 2, 0. the error of vorticity on the boundary as in (3.4.22). includes
one more error term h2e,. whose L? product with ¢ can be estimated by Cauchy
inequality. By (3.4.22). we can express B; as

N-1 p =l 1 -
(3.4.28) By = ) tiido = = Z i (4, — —u,o) + h? Z voae =1+ 1.
= =1 =1
As we mentioned just now. I> can be controlled by Cauchy inequality directly
(3.1.29) 3 }
L= hCe > -lyz—:liz‘--‘v_ hSe? —l\—li—cm 2

2= ' 1€ = 2 e Z i = Z ”ue’”C‘:"

where in the last step we applied our estimate that |e;| < Cllu.||czand the fact

that h = &. The estimate of I, follows our stability analysis in Section 3.3. First.

we rewrite the term appearing in the parentheses as the way in (3.3.10):

| -1~ S P
(3.4.30) du ) — Stz = 3, — §h2(D;U:)“1 .
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which is still valid since ¢ vanishes on the boundary. The purpose of this trans-
formation is still to control local terms by global terms as we can see later. Next.
plugging (3.4.30) back into I;

(3.4.31)

3 N 1 & -, & 2
hz Y = gm & v 3 1|<D;wu h*
(3.4.32) 9 N-l L V-1 o~ 2
> B2 Lin — > Dyw"" h*
i=1 = =1

Fol = L
1

Dzu'z.l

y

(3.4.33) B, >

The treatment of the other three boundary terms is essentially the same. Now

we recover B by global terms || D2¢|? and []ngﬂl2
Lom2one _ Lip252 1
(3:434) B 2 -3 DI — SIDG? - k.
As we can see. since ¢ [r= 0, Lemma 3.3.1 is still valid for v and Z. i.c.
(3.4.35) ID?eli? + 1Dl < (D2 + Dy)wll® = |IZ117 -

Substituting (3.4.35) into (3.4.34), plugging back into (3.4.26). we obtain

(3.4.23) finally. Lemma 3.4.1 is proved.

Lemma 3.4.2 Assume a-prior that the error function for the velocity field satisfy
(3.4.36) a|l= <1,

then we have

8C?

(3.4.37) (. D (a9 + uz)) < —U—HVhJH'"’ + gHuZ’IIQ-
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and

?.
1

(3.4.38) (0. Dy(EQ + vd)) < 3¢

IIVhLH' + —lel

where Cy = 1 + |ju |-
Proof. \We will only prove (3.4.37). The proof of (3.4.38) is essentially the

same. By the a-prior bound (3.4.36) and our construction of L™ and €. we have

Hulle= < WUle= + Jallee < lIGyweller + 1 < fluellco +1 < G

HQ”L“c < HagU’eHCO + Hagwe”co < ”ueHC‘ < Cl -

(3.4.39)

where C'y = ||u.||c: + 1. Summing by parts and applying (3.4.36). we obtain

(3.4.40)
(C.D(GQ + uD)) = —(D ¢, iQ + ud)

8C?

< Cllvsell(lal + Izl < —II-Z'II'“’~

where we used the fact that the norms [|D, ||, IIEyJII are bounded by ||V, i}
(3.4.41) lall = I1Dyell < IVadll. 5l = liD:ell < (IVal].

since ' vanishes on the boundary. Lemma 3.4.2 is proved.

Now go back to our convergence analysis. First we assume that (3.4.36)
holds. Plugging (3.4.37). (3.4.38), (3.4.25) along with (3.4.24) back into (3.4.23).
we obtain

(34-42) 19,012 < i + B v, - Lo +

o] =
QIQ

where we absorbed the term C'llz./?[[2 generated by Cauchy inequality: [(v-. )| <
Cif]]2 + Cllf]I? into the coefficient of [Vsw||?. which is valid since we can apply

Poincare inequalityv for v that

(3.4.43) ell? < ClIVael?,
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by the fact that ¢ vanishes on the boundary. Applving Gronwall inequality to

(3.4.42). we have

- v 4 o
19acl? + < [ 1212 dt

16C?t, rt ) ‘
(3444) < Clexp—=-E) [(IF )2 + ') ds + CTh*
16C?t ) N
< texp { 2EL | (el 1 + funlen)? + 7).

Thus. we have proved
(3.4.45)
T2\
lut-t) = u(®)lles + Vo ([ 12)7%dt)*

2 CcT y
< CR*(fluclicsa (1 + uellcslexp { == (1 + luelic)?} + T).
which implies (3.4.1). Using the inverse inequality. we have
(3.4.46) |@lje= < Ch.

Now we can resort to a standard trick which asserts that (3.4.36) will never be

violated if £ is small enough. Theorem 3.4.1 is proved.

3.5 Numerical Tests and Accuracy Check

In this section we check the numerical accuracy of our second order scheme.
with either Thom's formula or Wilkes’ formula. The computational domain is

[0. 1}%. The exact stream function. velocity and vorticity are chosen to be

ve(x. t) = Fsin*(xz)sin’®(7y)cost .
ue(x.t) = —5=sin*(wz)sin(2wy)cost .
ve(x.t) = s=sin(27x)sin’(7y)cost .

e

elx. t) = (Sin"’(r.r)sin(QTry) + sinz(ﬁy)sin(‘zﬁr))cost.
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The force term will come out if we substitute (3.5.1) into the momentum equation
(3.5.2) Orwe + V- (Uewe) = VAW, + f.

where f is expressed as
(3.5.3)
f = —sint(sin®(rr)cos(2ny) + sin?(7y)cos(27wr))

1 , : . 9 .2
+3sin(‘27y)sin(?wr)cos"t[—sm”(ﬁr)(1 — dsin“(7wy))

+sin?(7wy)(1 — 4sin?(7r))]
—472vcost [cos(27rr)cos(27ry) — sin?(wy)cos(27r) — sin"’(w:)cos(?ny)] .

We apply our second order numerical scheme (3.2.1). along with either
Thom’s formula (3.2.5) or Wilkes’ formula (3.2.7) as the boundary condition
for vorticity. The force term f as in (3.5.3) is added when we update the mo-
mentum equation in (3.2.1). The viscosity v = 0.001. and the final time is taken
to be t = 6.0. Explicit treatment of the diffusion term and the fourth order
Runge-Kutta time stepping were used (see E and Liu [ELV1] for detail). The
absolute errors between the numerical and exact solutions are listed in Table 3.1.
3.2. As can be seen in Table 3.1. if the second order method with Thom's bound-
ary condition is used. exactly second order accuracy. in both L'. L? and L>
norms. is achieved for the stream function. The vorticity achieves almost second
order accuracy in L'. L? norms and a little less than second order accuracy in
L> norm. [t can be seen in Table 3.2 that the second order scheme with Wilkes’
formula on the boundary indicates almost the same result as that with Thom's
formula: exactly second order accuracy for both stream function and vorticity
in L'. L? norms. exactly second order accuracy in L= norm for stream function
and a little less than second order accuracy in L> norm for vorticity. In other
words. the orders of accuracy of these two formulas for both stream function and

vorticity are almost the same.
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Table 3.1: Error and order of accuracy for stream function and vorticity at t =6
when the second order scheme with Thom’s formula for the vorticity at the
boundary are used. CFL=0.5, where CFL = %.

.l N [ L' error [ LT order ]| L? error | L? order ]| L= error | L= order |

32 || 3.79e-05 2.73e-05 1.53e-04

64 | 9.45e-06 2.00 1.43e-05 2.00 3.83e-05 2.00
Pl 128 | 2.36e-06 2.00 3.58e-06 2.00 9.56e-06 2.00
?L 256 || 5.90e-07 2.00 8.94e-07 2.00 2.39e-06 2.00

32 || 7.49e-0+4 1.01e-03 2.44e-03

64 || 1.96e-04 1.93 2.61e-04 1.95 6.57e-04 1.89
« || 128 || 5.07e-05 1.95 6.74e-05 1.95 2.26e-04 1.54

256 || 1.29¢-05 1.98 1.72e-05 1.97 6.50e-05 1.80

Table 3.2: Errors and order of accuracy for stream function and vorticity at
t = 6 when the second order scheme with Wilkes’ formula for the vorticity at
the boundary are used. CFL=0.5, where CFL = £&¢

A’
| [ N ] L"error [ L! order || L* error | L? order || L> error | L= order |

32 || 3.71e-05 5.67e-05 1.52e-04 |
64 || 9.35e-06 1.99 1.42e-05 2.00 3.81e-05 2.00

v 128 || 2.35e-06 1.99 3.57e-06 2.00 9.55e-06 2.00
256 || 5.89e-07 2.00 8.94e-07 2.00 2.39e-06 2.00
32 || 7.78e-04 1.06e-03 2.46e-03
64 1.99¢-04 1.97 2.66e-04 1.99 7.28e-04 1.70

« || 128 |l 5.09¢-05 1.97 6.76e-05 1.98 2.07e-04 87
256 || 1.29e-05 1.98 1.72e-05 1.98 6.09e-05 1.77
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CHAPTER 4

CONVERGENCE OF A FOURTH ORDER
METHOD

4.1 Preliminary

As the same in Chapter 3. we start with the 2-D NSE in vorticity-stream

function formulation:

Ow + V- (uw) = vhw.
(1.1.1) = w.

uz_yw, v:azU'

with the no-slip boundary condition written in terms of the stream function ¢
(1.1.2) v=0 —=0.

Here u = (u. v) denotes the velocity field, w denotes the vorticity.

The subject of fourth order schemes for (4.1.1). (4.1.2) has attracted consid-
erable attention recently. For example, E and Liu proposed Essentially Compact
fourth order scheme (EC4) in [ELV2], and proved the fourth order convergence of
the method. Their analysis resorts to Strang type high order expansion. A tech-
nical assumption of one-sided physical, one-sided periodic boundary condition
was also imposed.

The purpose of this paper is to give a thorough analysis of the fourth order

scheme proposed by them. The boundary condition for vorticity will also be
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analvzed in detail. Briley’'s formula. which was derived in [BRL]. was used in
(ELV2]. We will derive a new formula in this paper. which gives higher order
accuracy for the vorticity on the boundary by formal Tavior expansion. First we
present the main idea of the convergence analvsis and an accuracy check for a 1-D
model for the Stokes problem. The advantage of this 1-D model is its simplicity:
we can easily see why Brilev's formula gives full 4th order accuracy although the
formal Tayvlor expansion of it only indicates 3rd order accuracy on the boundary.
This is accomplished by making expansions which are implemented by a third
order polynomial. Then we treat the full Navier-Stokes equations in 2-D with a
[0. 1] box as the domain, with the physical boundary condition (4.1.2) applied
on all boundaries. We then present the convergence proof for the analogous {th
order (EC4) scheme with our new 4-th order vorticity boundary condition. The
use of this new boundary condition simplifies the consistency analvsis. No Strang
tvpe expansion is needed.

The procedure of our convergence proof is standard: consistency analysis
and error estimate. Consistency analysis is similar to that in the second chapter.
Yet there are still some differences since our fourth order scheme involves an
intermediate variable for vorticity. We construct the approximate intermediate
vorticity variable via finite difference of the exact stream function. and recover the
approximate vorticity by solving a linear system, whose eigenvalues are controlled.
through the approximate intermediate vorticity variable with suitable boundaryv
conditions. To maintain higher order consistency for vorticity. which will be
needed when we compute its finite difference, we add an O(h?') correction term
to the exact vorticity on the boundary when we set our boundary condition for
the approximate vorticity. The approximate velocity will be constructed via finite
differences of the exact stream function. Then we can show that the constructed

profiles satisfy the numerical scheme up to O(h') truncation error. including
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the vorticity on the boundary. Next, we perform a stability analvsis and error
estimate. \We adopt the technique used in E and Liu [ELV2] and in the second
chapter. The basic strategy is to use energy estimates. with special care taken
at the boundary. Standard local estimates do not work for the boundary terms.
due to the interior points of stream function involved in the boundary vorticity
formula. so we have to apply elliptic regularity at the discrete level. and then
control these local terms by global terms.

In Section 4.2 we outline the main idea of the EC4 scheme for a 1-D model
for the Stokes problem. Stability of both two boundary conditions will be estab-
lished there. which is accompanied by numerical accuracy check. The rigorous
convergence proof of the method with Briley’s formula as vorticity boundary
condition will also be presented, by which we hope to explain the ideas in our
consistency analvsis clearly, including Strang type expansion and the construc-
tion of the approximate profiles. In Section 4.3 we look at the EC+ applied to
2-D full Navier-Stokes equations, and present the convergence analysis for the

scheme. where the new 4-th order vorticity boundary condition is applied.

4.2 Convergence and Accuracy Check for 1-D
Model

To explain the idea of our fourth order scheme more clearly. in this section
we consider a simple 1-D model for Stokes equations. where nonlinear terms are
neglected. The purpose of the introduction of this model is to catch main features
and difficulties both in computation and analysis. The idea developed here can

be applied to full 2-D nonlinear case as we can see in Section 4.3. This 1-D model
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reads
Oww = v(0% — k?)w .
(1.2.1) (2?2 - Kvw=uw.
v=0,v=0. atr=-1.1.
whose solution is the k-th mode solution of the unsteady Stokes equations in the

domain [—1. 1] x [0.27]

Ow = vAw.
(1.2.2)
A =w
where the no-slip boundary condition, ¥ = d;¢¥» = 0. is imposed at r = —1.1.

and periodic boundary conditions are imposed in the y direction. An exact

solution of (4.2.1) is
(4.2.3) e(r.t) = cos(uz)exp {—u(l:2 + uz)t} )

where p satisfies ptan p + ktanh £ = 0. See [OI2] and [ELV'1] for detail. For
simplicity we take & = 1.
4.2.1 Description of Fourth Order Schemes
Essentially compact fourth order scheme (EC4) for 2-D Navier-Stokes equa-
tions was proposed by E and Liu in [ELV2]. We can use the similar idea to
deal with the 1-D model (4.2.1). As we can see, the operator 2 — | can be

approximated by compact difference operator
h%\ N2
( - E)Dz -1
h? N2
1+ D2

(4.2.4) 2 -1= + O(hy.

Applyving (4.2.4) to both the diffusion term in vorticity equation and the kine-
matic relation between stream function and vorticity in (4.2.1), and multiplyving

both equations by 1 + '[‘—,D;' we obtain the following system

(1.2.5)
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=1
N

where the auxiliary term T was introduced as

R?
(4.2.6) 7= (1+ 5D}

&l

As we pointed out in the second chapter where we deal with second order
scheme. there are two boundary conditions for ¥*. The situation here is similar.
The Dirichlet boundary condition ¥ = 0 on £ = —1.1 can be implemented to
solve the stream function via (4.2.3). Yet the normal boundary condition 9, ¢ = 0.
which cannot be enforced directly., will be converted into the boundaryv condition
for the vorticity. For example, Brilev’s formula
(4.2.7) w0 = %(601 - gbz + gf./fs) - 31—,11 (g—;)o
was used in the EC4 scheme (see [BRL], [ELV2]). We should remark here that
Brilev's formula is only third order accurate for the vorticity on the boundary
by formal local Tayvlor expansion. Later we will show that it still preserves {th
order accuracy. It was first proved in [ELV2]. Next. we derive our new {th
order vorticityv boundary condition. First, we use a 4th order approximation of

< = (92 — 1) on the boundary:

1

9 Jyp—
(128) 0T 12h2

(16(v-1 + 1) = (W2 + v2)) + O(h*) .

where (—1). (—2) refer to the "ghost™ grid points outside of the computational
domain. Note that we need five points of ¥ to obtain fourth order accuracy for
«. which is different from the second order case, where we only need three points

of v* as we discussed in the second chapter. Then we prescribe the values for the

“ghost™ points of ¢ using the no-slip boundary condition 3_1;_ =0.onr=-1.1
along with a 6-th order one-sided approximations for v

3 1 _, [(Ov
(1.2.9) Loy = 100 — 5w + oty — —wy — 5h [ == | + O(RS).

3 4 oz /,
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+ O(h%).

4]

} e
(4.2.10) Loy = 801y — 451 + 16ws — 2wy — 30k | 25
2 or

Combining (4.2.8). (4.2.9) and (4.2.10). we obtain

1 8 1 25 (dv
4.2.11 00 = — oy — 3, e U i _ — | —_— A
( ) 0= 75(8u1 — 3w+ gus — qu) - ¢ ( )0

We will use this new formula to perform our analysis of 2-D EC4 scheme in Sec-
tion 4.3. The system (4.2.3). (4.2.6) along with the boundary condition (4.2.7)
or (4.2.11) can be implemented very efficiently via an explicit time stepping pro-

cedure introduced by E and Liu in [ELV2].

4.2.2 Stability Analysis of the Scheme
One of the main concerns in the higher order schemes are their numerical
stabilities. We will have a look at the 4th order scheme with the boundary

conditions we mentioned above. First we introduce some notations. Notation.

We will use the discrete L2-norm and the discrete L2-inner product

(4.2.12) el = (u. u)t’?. (w.v)y= > uuvh.
1<i<AN -1

For ug = ux = 0. we introduce the notation [|V,u|| by defining

Uppp — U,

(4.2.13) IVaul* = Y (Diu)? A, where D} u, = A

0<1<.N -1
Similar notations of L* norms and inner products, one sided difference norms
in 2-D analogous to (4.2.12). (4.2.13) can also be introduced. Note that in 2-D

case. the discrete inner product (u.c) will turn out to be Y~ u,, v, %
1<t y<N-1

morcover. ||Vyul|l? includes two parts. for both D} u,, and Dju,,. where the
forward difference operators D;. D; can be defined similarly as in (4.2.13). We

will use these 2-D notations in Section 4.3.
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4.2.2.1 Stability of Briley’s Formula

We look at the fourth order scheme (4.2.5). (4.2.6) with Brilev's formula

h®
(4.2.7) first. The first step here is to multiply (4.2.3) by —(1 + FD;)U
(4.2.14)
R _h? s h? oy h? . o
~((L+ 33D (1 + =D2)aw) + <(1 + =D ((1- 5D - 1),u> ~0.

The first term. which is corresponding to the time marching term. can be esti-
mated bv the discrete kinematic relation between ¢ and « as in (4.2.3)
(4.2.15)

—(1—~—£I—D) (+f11) )Oww)

= <(14———D . a.(l—— 1)z,>

Y 2 h?
= —((1 + ——D;)L O (1 — ﬁ—)D“L,) —{((1+ 1)D Ju. —0w)
1 h- d , h- h? 2 ld, ., h*d
=51-33) EHVM«H -——(1—'1—5)22“0 ol* + 55”0” —QEHVM“
1d h? 5 o
= 57 (L= NVael + [jef? —ﬁu— D).

and the second term. which is corresponding to the diffusion term. can be esti-

mated via summing by parts

(4.2.16) X ‘
<(1 + %D‘;ﬁ)u. (1 - g)pﬁ _ 1)w>
- (. (1—’[—3)0 2+ (e )+ (D2, (1= D2y + (D, -
—((1——— D2 . L)+ l(l—f—j)(blwo-{'—b‘v_[w\ )+ (—w . w)
+{(1 - %)D v h—)Dz.u) + (—¢, h—DQ.u) +fl ?—z(bldo + Unowy)
= <((1 - ?—;)Dﬁ - I)L’. (1L + %Dg)w> + E(wa'o + UNo1Wy)

5 |1
= |[(1 + —,)D;)«'—'il' + E(L'M‘o + UN_ WA ) -

As we can see in (4.2.16). we have to control the boundary term to ensure

the stability. Here we decompose the boundary term into two parts B = B, + B..
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1 1 . .. .
where B; = —uywo and By = —w@y_1w~. For simplicity of presentation. we only

h h
consider B; here. B, can be treated in the same way.

We can apply Brilev’s formula (4.2.7) to update B,

_ v .3 2
(4.2.17) 31=Eﬂ&m—§wr+§w%

However. a straightforward calculation cannot guarantee a bound of B;. The
difficulty comes from the fact that three interior points of stream function are
involved in Brilev’'s formula. Here we apply the similar technique used in [ELV2]
and our previous paper when we dealt with second order scheme with Wilkes’
formula in the second chapter: as can be seen. the term (6v; — %wg + %U':}) can

be rewritten as

3 2 11 19 , .. 2 5, 5
1.2.18 6Ly — swa + ~u3 = U — —=h* D2 + —h*Dluy.
( ) Li = gt + gty = ot — it Dren + gt
which is valid since v¢ = vy = 0. The purpose of this transformation is to

control the local terms in (4.2.17) by global quantities as we can see later. Now
(4.2.18). along with Cauchy inequalities applied to vy DZvy and vy D3, gives us

the estimate of B,

¢y, 1l 19, 2,
= o e, - , < D o
B, /13( 3 18h D%y, + gh 24)
Loy L 192 5 12 12 122, 1 ., .,
(4 2-19) 2 3,13 - W@UI - §lDrwll h —_ 5}1_39_2&)1 —_ §'thv,2| h
2(.'}" | S 1 o
> Sl D% - 5ID3 .
19° 22

where in the last step we used the fact that 13-1- - %(Wé + 5z) = 2. The term B,

can be estimated in a similar fashion. Now we arrive at

(4.2.20) B> -

1 5
> h|D2v;|? > —3”D§UHZ-

1=12N -1, N=2

N o—

As mentioned earlier, the transformation (4.2.18) and the application of

Cauchy inequalities give us a bound of the boundary term. which is a local term.
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by a global term ||D7uv||?. Next. we need to control ||D?¢'||?> by ||Z||* appearing
in the diffusion term. which can be resorted to the following lemma.
Lemma 4.2.1 For vy = vy = 0. we have

9 . m h‘2 2 h- 2 , }12
(4221) (1 = Dzl < I((1 = 5D = 1)ell =1+ 35

D3)<li = |iI=]] -

Proof. The boundary condition ¥y = vy = 0 indicates that we can Sine

transform ¢,

(4.2.22) wi =Y Cesin(krz,) .
k

The Parserval equality gives that

(4.2.23) Z(u, = "(w)?.
k

4 k=h ) ~
—sin® (—). then we have D3y; = kauk sin(k7r,). which in

We let f, = v
A2 2 k

turn shows the Parserval equality for (1 — ';—;)Diw and ((1 - ’%_;)D;’ - 1)1:
h? 9 2 hz 9 "o
(1 = ) Dzell* = hZ(l - )R

u(u-% D? - )bulzhz(l—-— L—l)zl:'f.

On the other hand. fx < 0 implies that (1 — %)2ff < ((1 - ,;—;:)fk - 1) . Then
we obtain (4.2.21). Lemma 4.2.1 is proved.
Plugging (4.2.21) back into (4.2.20), we obtain

(4.2.25) B> -—L 0+ 2w > -2z
T T o201 -5) 12 = 3 ‘

2

—

Substituting (4.2.25) into (4.2.16). along with (4.2.15). and denoting “energy”™ E
as

h? h?> h?

(1.2.26) E=(1-¢) N awl? + [l¢|? - ——)IID' 2.
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we finally arrive at

ldE

L 2<0.
o+ 5vll

(4.2.27)

This completes the stability analvsis of the fourth order scheme (4.2.5) with

Briley’s formula (4.2.7).

4.2.2.2 Stability of the New Fourth Order Formula
The stability of the fourth order scheme (4.2.3) with our new l-th order
vorticity boundary condition (4.2.11) can also be ensured by similar arguments.
(4.2.15). (4.2.16) are still valid here. The only difference here is the estimate of

the boundary term B = By + B,, where B; can be expressed as

1 1] , : 8 1
(4.2.28) B, = Eu'lw'o = h—;(SWL — 3un + §L'3 - gﬂ\) .

by our new 4-th order formula (4.2.11). Note that one more interior point of ¢ is
involved in our vorticity boundaryv formula. The estimate of By in (4.2.28) also
follows our procedure above. First, we rewrite the term (8w — 3wy + gr."g — El-‘l_‘.;)
as

8 1 25 115 23 L, 0
(1.2.29) Svy —3eu + §L,'3+ gl.‘,'4 = —6—1./1 — _-h. D T %h D g’l'D;L':; .

and then repeat the procedure and argument as in (4.2.19). which gives that

h,25 lla 9 2 23 2.
= (= - == —h? -
B[ ,(GLl h.DL/J1+36 DIQ ShD )
B 1 115° 1 232
2 - : 0","__|D2/,I2 T 5753 3m2 ¥ 2 IDL’Ih
(4.2.30) 6h3 122}13 1) 2h3 362
“gmm it T pIPeualh
Y, 2
> S5 - Sh(IDZ + D2l + | Divsl

0 ¥4 =2 2 2 .
where we use the fact that 2 — (45 + 2 + 1) > 2. Then we can also arrive at

B > —3||D?||? as in (4.2.20). Lemma 1.2.1, which controls the term {| D%¢ || by
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the diffusion term [|Z|2. is still valid here. Finally. repeating (4.2.23). (4.2.26).
we obtain (4.2.27). which shows that the fourth order scheme (4.2.3) with the

vorticity boundary condition (4.2.11) is also stable.

4.2.3 Numerical Tests and Accuracy Check

We now present accuracy check for the fourth order scheme with boundary
conditions we mentioned above. The exact solution of (4.2.3) with & = 1. the
viscosity v = 0.01. and the corresponding p = 2.88335565358979 which is deter-
mined by & = 1 will be used for comparison in our numerical experiments. The
final time is taken to be ¢t = 1.0. Explicit treatment of the diffusion term and
the fourth order Runge-Kutta time stepping were used (see E and Liu [ELV'1] for
detail). Table 4.1 and Table 4.2 list the numerical results of fourth order schemes
with two different boundary conditions for the vorticity. As can be seen in the
tables. the EC4 method with Briley’s boundary condition achieves fourth order
accuracy for the stream function, and gets more than fourth order accuracy for
the vorticity. The EC4 scheme with our new 4th order boundary condition on the
boundary also achieves the fourth order accuracy for the stream function. and
gets almost fifth order accuracy for the vorticity. In other words. the orders of
accuracy of these two formulas for the stream function are almost the same. vet
our new fourth order boundary condition performs better than Brilev's formula

in the accuracy for vorticity.

4.2.4 Convergence Analysis of the Fourth order scheme
In this section. we will give a convergence analysis of the fourth order
method. The stability of it. with both Rriley’s formula (4.2.7) and our new
4-th order vorticity boundary condition (4.2.11). has been been established in
4.2.2. We only analyvze the convergence of the one with Brilev's formula here,

since the consistency analysis of it will turn out to be more technical than that
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of our new 4-th order formula. by which we hope to explain the methodology
of Strang type expansion. As we can see. direct truncation error analysis gives
us fourth order accuracy for the momentum equation, but only third order ac-
curacy for the vorticity on the boundary if Brilev’s formula is used. Below. a
more careful truncation error analysis will be carried out by including a higher
order term, which is known as Strang tvpe analysis to construct approximate
stream function. In addition. the construction of the approximate vorticity needs
some technique: first. the approximate intermediate vorticity variable will be
constructed via finite difference of the approximate stream function: then. our
approximate vorticity field will be constructed by solving a linear system through
the approximate intermediate vorticity variable. The eigenvalues corresponding
to the linear system are controlled. To maintain higher order consistency for the
approximate vorticity. we add an O(h') correction term to the exact vorticity on
the boundary when we set its boundary condition. which leads to the convenience
when its finite differences are computed.

All the analysis in this section can be carried out to our new formula. which
is more straightforward. no expansion is needed.

4.2.4.1 Consistency Analysis
Denote t’. «. as the exact solutions. extend v, smoothly to [—1 — 4.1 + 4].

and construct the approximate stream function ¥ = v, + k' with
- 1 , 1 )
(4.2.31) w(r. t) = Ia(t)(r +1)(1 —x)° - EJ(t)(I +1)(1—-1zx).

where a(t) = —8d%.(-1). 3(t) = =23%0.(1). The choices of a(t) and .3(¢) will
guarantee W to satisfy higher order truncation errors in Briley’s formula. which

we can see later. It is obvious that (sav at the left boundary y = —1)

(1.2.32) (—1) =0. du(—1) = —%c‘ﬁwe(—l)-
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To estimate .. we can see that J%¢' = 0. which implies that
(1.2.33) 1Cllem = lClles € Clluelles. ifm > 3.

Moreover. our definition of a(t) and 3(¢) implies that |8,a(t)|. |3:3(¢)| < Cl|aP2 .|| ce-
To have a good estimate of |9,8° L. ||co. which is exactly |32, wel|lco. we see that

d, L. satisfies

(02 — 1)Ove = Qe . in [—1.1],
(4.2.34) )0, : [ ]
dte=0 atr=—-1.1.
which implies that ||Gitellcs < Cl|Oiwellcs- On the other hand, [|Oywel||cs can

be controlled by the order of ||«.|lcs from our original vorticity equation that

iwe = (02 — 1)w.. The combination of the above arguments indicates that
(4.2.33) [Bia(t)}.10.3(t)] < Cl|9 3t e]lco < Clldrwellcr < Cllwelles < Clleeller -
and the fact that d,o = L(z + 1)(1 — 1)%0ca(t) — Lz + 1)*(1 — 1), 5(¢) gives
(4.2.36) [8Cllcm = l10llles < Clltelles. ifm>3.

The construction of the approximate vorticity is quite tricky. First we define

(4.2.37) Q=((1- %)Dﬁ - 1)¥,. forl <i<NVN-—-1,

and then recover ) by solving the following svstem

(4.2.38) (1+ f—;DE)Q, =0,.

\We should mention that (4.2.38) always has a solution since the eigenvalues of
the matrix corresponding to 1 + ';—;D;’ are all non-zero. On the other hand. the
implementation of (4.2.38) requires the boundary value for Q. To maintain the
higher order consistency needed in the truncation error estimate below for the
discrete derivatives of the constructed vorticity. we introduce

l > ~
(4.2.39) P = Dy where 2 = ——3%,. 2, =(8% - 1)u.
.)40 I I

)
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where h*'Z is the O(h') truncation error of ((1 — %)Dz -~ ) -1+ % D )se
h'Z, is the O(h') part of h*((1 — %5)D? — 1)w. The boundary condition for
(say at g = —1) is imposed as

(4240) Oy = .,Je(.l'o) -+ h4;'0 .

and Q. can be determined similarly. The purpose of this choice can be seen in

the following lemma.

Lemma 4.2.2 We have on the grid points r;, 0 <t < N,

(4.2.41) Q = 2o + AT + O(h%)||wellcs -

Proof. First we note that

h'.’ > hz )
(1+ EDI)Q = ((1- 5)D% - 1)¥
(4.2.42) B2 B2
- 2 .ot - D2 -1\
= ((1— E)DI—I)LeTh ((1 12)DI 1)1...
where the first term can be estimated via local Taylor expansion
h* h?
(1= 5502 = D)ee = (Ut 55D = 530 + OB el
(4.2.43)
o,
= (1 4+ —=D%w. + A2 + OhO)||Wellce -

12
where 2, was introduced in (4.2.39). and the second term appearing on the right

hand side of (4.2.42) can be treated as

h? Y ~ -
W1 =)D =1)E= k(82 = 1)T + O(h)[llcs
(4.2.44)
= h'Zy + O(h%)[wellcs «
where we applied (4.2.33) and 2, was also introduced in (4.2.39). The combina-

tion of (4.2.42), (4.2.43) and (4.2.44) gives us

h'.! S h“
(1+ 1_)D;)Q = (L+ 509w +1'2) + h'Zy + O(h®)|[€el| s
(4.2.45) - h2
= (1+ FD oo + I + O(R®)|wellcs -
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On the other hand. the fact that ||DZZ||co is bounded by the order of |t ||~

from our construction of = gives

2 \ h"
(4.2.46) (1+ I_;D;)(J,_, +R'Z)=(1+ —D 2Ywe + BT + O(R®)[|wellcs -

The combination of (4.2.45) and (4.2.46) shows that at interior grid points r,.

1<i<N-1.

(1.2.47) |(1 + —D 2NQ - v — h2)| < CROflielicn -
On the boundary (say at ¢ = 0). (4.2.40) indicates

(1.2.48) Qg — (we + h'2)e =0.

Since the matrix [ + %Dﬁ is uniformly diagonally dominant. we obtain (4.2.41)
from (4.2.47) and (4.2.48). Lemma 4.2.2 is proved.

Next we look at the truncation error of the diffusion term. By Lemma 1.2.2
and the fact that & and its divided differences up to second order are bounded

by the order of ||w.|lcs. we have

(4.2.49) |DQ — we)| < ChY[ue]lcs .

which along with (4.2.41) gives us

(1.2.50) (1-=)D2-1)a=(1- "2 - 1)we + O(h*)||2e[lcs -
On the other hand. local Taylor expansion of ., shows that

) _ h? 2 ~2
(1.2.51) (a- )03 - we = (1 + Faﬁ)(a; — Dwe + O(RY) |[wellcs -

The combination of (4.2.50) and (4.2.51) implies that

, R
(4.2.52) (1= 5102~ 1)Q = (1 + =82)(82 — Dwe + O(BY) || el

I 1.) Ir I
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Now we estimate the time marching term. At the interior grid points r,.
1<i<N-—1.

h-

9= a((1 - =)D} - 1)@
(4.2.53) h_ B2 _
= at((l—l—) Dﬁ—l)u’e+h48,((l—1—9)Dx 1)o.

where the first term can be treated via local Tavlor expansion and the kinematic
relation between ¢, and w.
(4.2.54)

. h'l 2 . h’2 2 6 6 iy
0,((1——)Dz—-1)¢e—8¢(I+53,)~Je 8(3601 IHr’3‘ue)+0(h MOewellcs -

and the second term can also be controlled by

R, - , - ~
(4.2.53) hia,((1 - 5)D: - 1)< = k198 - 1)@ + O(hS) |0l -

Again. by (4.2.34), we have the following estimate
(4.2.56) 18¢ellcs < CllOwwellcs < Cllwelles < Cllwelles

where the original PDE that dyw. = v(9? — 1), was applied in the second
step. The term ||8¢1Z|]C4 appearing in (4.2.53) can be controlled by (4.2.36). The

combination of (4.2.53)-(4.2.56) shows that
(4.2.57) (1 + =D - (1 + =0%)we = O(hY)|lwelles -

Combining (4.2.57) and (4.2.32). the estimate for time marching term and
diffusion term respectively. and applving the original vorticity equation which

immplies that (1 + '{;82)(@;% - v(d? - 1).4;8) = 0. we arrive at

5 = h? h?
(4.2.58) (1 + l—D ) - v((1- 5)D% - 1)Q = O(h")||wellcs -

at grid points r;. 1 <i: < NV — 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

Finally we look at the boundaryv condition for 2. We will show that Q
satisfies Brilev's formula applied to ¥ up to O(h') error. To verify it, first we

have a look at the expression appearing in Brileyv’'s formula (say near the left

boundary rg = —1)
(4.2.39)
3 2 3 2 ~ 3~ 24
G\I’l - E\I/g + §‘I’3 = (67.‘;‘8(1'1) — 5(_,?8(.1‘-_)) + §C'e(1‘3)) -+ h4(6¢‘1 — 5 Do <+ §l.//3) .

The first term can be estimated via Taylor expansion of v. keeping in mind that
te(ro) = Orte(zo) =0

(4.2.60)

1

5/ Fve(zo) + OR)l[wellcs -

3 2 242
GL'C(Il) - 31.'}(3(1'2) + §we(:c3) = h"a;t'e(lfo) “+

The estimate of the second term appearing in (4.2.59) can also be carried out via
Tayvlor expansion and our construction of v
~ 3~ 2~ 11,5 ~ ~
h (6w — ¥ + §U>‘3) = —.3-'l°arl"(1?0) + O(h®*)|[eflce

(4.2.61)

1 - -
= —gh’Oive(zo) + O(F)l|eellcs -

where we used (4.2.32) and (4.2.33). As we can see. the O(h®) terms appearing
in (4.2.60) and (4.2.61) cancel each other if we put them into a combined term
6W, — 3¥, + 2¥3 because of our special choice of a(f) and 3(¢). The reason of
the choice can be seen more clearly here. The combination of (4.2.39). (4.2.60)
and (4.2.61). along with the fact that w.(xo) = (97 — 1)ue(ry) = &?we(xo) since

v+ vanishes on the boundary, gives us

3 2 2
(4.2.62) 6W, ~ S, + §‘I’z = h’we(x0) + O(h®)|welles -
in other words.
(1.2.63) (20) = (60 — Sy + 2Wy) + O(RY ||l
2.6 we(ro) = 75 (6W — 5%, + SW;5) - ellcs -
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On the other hand. our definition of 4 in (4.2.40) and the fact that |&g| <

C'||t|l¢s implies that the difference between Qg and . (.ro) is of order O(h*)||w.||cs-

Then we obtain the boundary condition for €2:
) 1 3 2 p
(4.2.64) Qo= h—2(6‘111 - 3\1’2 + §\D3) + h'ey. where |eg] < Clleellcs -

4.2.4.2 Error estimates

For 0 < i < .V. we define
(4263) 13,- = L//‘,‘ - \I’, . .:J,‘ =« — Q, .

and the error function for T is defined at grid points r,. 1 </ < N —1,

" p2)a,.

i=57i‘—Qz=(1+E

th

(4.2.66)

Our consistency analysis carried out above gives a closed system for error func-

tions
2.67 (1+%D§)3‘5’=“((1 —%)Dﬁ— )Z+f.
(4.2.67) h2 ) _ 2 N ] ]
(-Eypz-1)e=(1+2D2z.  G=dv=o.

where the local truncation error f satisfies | f,| < Ch'|l¢.||c+~. On the boundary,

(say at the left boundary point g = —1)
-~ 3~ 2~
(4.2.68) To = FL;(Gw1 — vt 51;’3) + h'eg.

where {eg) < Clluellcs- (4.2.68) comes from Brilev's formula (4.2.7) and our
estimate for € (4.2.64). In other words, the error function of vorticity and the
error function of stream function satisfy Brileyv’s formula up to O(h') error.
The system of the error functions (4.2.67) along with (4.2.68) is very similar
to the fourth order scheme (4.2.5) with Brilev's formula (4.2.7). except for local
truncation error terms f, h*ey. The procedure of stability analysis carried out

in 4.2.2.1 can be implemented here similarly.
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Multiplying (4.2.67) by —(1 + D Ju gives
(4.2.69)
h. h" h h > ~
(~(1+ 5 D). (1 + 15 D2)a3) +< (1+ 5D ((1 - D2 - 1)w>
=(—(1+ 1—; i)w. ).
The term corresponding to local truncation error can be controlled by Cauchy

inequality
2

h 2\ = TR TR
(4.2.70) (—(1+ FD;):;. F) < Cllvli” + Clifil-.
and the results corresponding to the time marching term and diffusion term are

analogous to (4.2.15) and (4.2.16)

—{(1 + ZDz)L;;. (1+ EDz)a@

(4.2.71) B2 _
=:o(a-% uvmmnun - —( ~ TIIDZER)
(4.2.72)
h2 2\ ~ l2 2 - h* 1 ~ _ ~ -
<(1 + ED;)U. (- é)D; - 1)w> =1 + —D HZ? + + (@130 + byo1dy).-

The estimate of the boundary term B = B, + B,. where B, = %(wll'o) and

B: = }(vy_12x) is similar to that in 4.2.2.1. The boundary condition for J; in

(4.2.68) gives us

- 3. 2.
(4.2.73) B, = Ll)l( (6L1 - -L') + §L ';) + h 60)

Analogous to (4.2.18), we can rewrite the term 6131 - %Q’g + %1.7’3 as %Jl -
Bh:D2) + 2h*D?%,. Then the procedure in (4.2.19) can be repeated to es-

timate B3, here. where we will use Cauchy inequality to estimate the error term

(4.2.74)
1l 19 -2, - -
B, = ;;(——u - ﬁth;z-.’»’"l + §h203‘~'2) + h'uieq
e 1192 1, o~ 1 22, 1 1e? o,
> G T amig i T PRl gt - 5IDkalth - i - e
[.'.’ 1 ”~ 5 - ”
> ‘}';L - §zD;L.’1[“h - 'é'lDz.l/)zlzh - hgea.
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Similar to (4.2.20). we arrive at

1 9 T a9
(4.2.75) B> — S AIDAGP - RO(ed +ed) > —5IIDzul? = A%

1=12N-1,N =2

o —

if i is small enough since |ep|. |ex]| < Cllw.{|c.
Since vg = vy = 0. we can use the same argument as in Lemma 4.2.1 to

conclude that

_ h" S h?
(4.2.76) (1 — = D2UH < ||( 3)0: - Dol = 11 + 2—D 2l
Substitute (4.2.76) into (4.2.73) and (4.2.72), we obtain

_— h? h% -

(4.2.77) (1+ 5093, (1= 5D = 1)) > -4

Combining (4.2.77). (4.2.72) and (4.2.71), denoting E as

— h—
(4.2.78) E=(1-~ —)IIVMI +llel? - —(1 - Dz

along with the Poincare inequality for ¢ which states that ||v|| < C|| V|| since

v* vanishes on the boundary, we arrive at
l1dE

— < CIfIF + Cllelf + h® < CUFIP + ClIVaef* + A*.

(4.2.79)

V)

[ntegrating in time. we obtain
. . T T -
(4.2.80) E< c/ IF12dt + C/ IV Rel[2 dt + 2Th® + O(h®) .
0 0

where O(h®) is the initial term of E(.0). By our construction of ¥. we have

v(.0) = h'e(.0). Moreover, we get O(h®) < Ch®||ue||Z«. The fact that | DZc|)? <
A cli2. which implies that ||V,9][2 < E. along with (4.2.80) leads to

- T T -,
(1281) V.2 < C/O IFIZdt + C/O IVae|2 dt + CTR® + O(h").
By Gronwall inequality. we have

- T
(12:82) IVl S C [T IFCo9)lPds + CTH" + O(h*) < Ch(llwelié + T) .
0
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Thus. we have proved
(4.2.83) (IVa(w(-.t) — Ce(OM: < CR ([leelles + T .

which gives the convergence of the fourth order scheme along with Briley’s formula

4.3 Analysis of EC4 Scheme for 2-D NSE

4.3.1 Description of the scheme

Essentially Compact Fourth order scheme (EC4) for NSE (4.1.1), (4.1.2) was

proposed by E and Liu in [ELV2]. Motivated by the fourth order approximation

to A in 2-D
Ay + £D2D?
(1.3.1) A= E2E  omy.
1+ EA"
they discretize NSE in 2-D by
( h% .,
i = (A + ED;D;);J -NC.
h2
(4.3.2) ¢ (D + ?DZDS)U} =z. vlr=0.
h?.
\ (1+ EAh)w =.

where the intermediate variable T was introduced as T = (1 + '{—;Ah)w. and the
approximate nonlinear term N'L is given by

h? h? — ~
?Ds‘)(v“") - EAIA(UDIW' + L'Dy.‘.u') .

o = h? =
(4.3.3) NL =D, (1+ —é—Di)(uw) +Dy(1+
Note that the implementation of the third term of (4.3.3) needs the boundary
value of uﬁr.‘: + I'D-yuu. Since the velocity u vanishes on the boundary. we can

set
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The velocity u = (—0,v.0;¢) can be valued by using the standard long-

stencil 4-th order formulas:
o = = h? 2 5 2
(4.3.3) u=—-D,(1- FD”)U: v =D/l - —D).

Note that the implementation of (4.3.5) near the boundary needs “ghost point”
values of v. which was discussed in Section 4.2 Corresponding to the new 4-th
order vorticity boundary condition we will state below. we adopt the following 6-
th order one-sided approximations for v at “ghost™ points. (say. near . j = 0),

which are 2-D versions analogous to (4.2.9) and (4.2.10) as we presented in 1-D

case
5 1 ou
(4.3.6) vy = 10U — 3¢ + 311/‘:‘.2 - —Ui2 — 5h(—1)z.0 +O(h%).
3 4 oy
- - ) 5 8[/' 6
(4.3.7) Lo = 80w, — 43¢0 + 16Uy 3 — L 30h(a)z.o + O(h®).

On the boundary. we use the no-slip boundaryv condition u {r= 0.

The boundary condition for vorticity has been discussed in Section 4.2. For
simplicity of our analvsis below, which does not need the correction term Ay
as we added in 4.2.4.1. we use our new 4-th order vorticity boundary formula
corresponding to (4.2.11) in 1-D case. which can be derived from (4.3.6) and
(+.3.7)

25 Jw

1 8 1
4.3. w0 = (8w — 3Y; g% sthy) — =\ 3—)w0-
( 8) -0 12(81“'1 U,2+9L/.3+ L) 6h dr)'o

8

The last terms in (4.3.6). (4.3.7) and (4.3.8) vanish if no-slip boundary condition

for velocity is assumed.
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Theorem 4.3.1 Let u, € L¥([0.T):C"*(2)) be the solution of the Navier-
Stokes equations (4.1.1)-(4.1.2) and u, be the approrimate solution of EC4. then
we have

(4.3.9)

. . cCc'T
fu — wnilp=qorLzy < ChY|uellL=(o.r.cre)(1 + !lue”Lx({o.Tg.C'S))EXP{ } .

where C* = (1 + ||| L=(0.77.c5))*-

4.3.2. Consistency Analysis
We denote v, u..w, as the exact solutions of NSE. and extend v, smoothly
to {=d.1 +d]%. Let ¥,; = Ue(zi y;) for —2 < i.j < N + 2. and construct U, V’
via the finite differences of ¥

(4.3.10)
h2 2

L.l.j: D(l—‘gD)‘I’ ‘z]—D(l-'ﬁ—D )‘I’ fO['OSl.JS_V.

The construction of the approximate vorticity is similar to that of 1-D case. First

we define

_ h2 , .
(4.3.11) Q,, =(On+ EDﬁD;)\I/. for1<ij<N-1.

and then recover €2 by solving the following system

A2 —
(4.3.12) (1+ ﬁAh)Q =Q,.

once again. (-.3.12) always has a solution with suitable boundary condition for
since the eigenvalues of the matrix corresponding to (1 + %Ah) are all non-zero.

The boundary condition for Q2 (say on [, j = 0) is set to be
(4.3.13) Do = (we)io + A 20 0<:<.V.
where the function = is introduced as

Loto Loy —aal)

(431—1) .:':(—m T )40 Yy 0 Y%
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\We should mention here that A'Z is just the O(h*) truncation error of (A, +
"{DﬁDﬁ)L . (I-L—A,,).‘,e which is corresponding to A'Z, as in (4.2.39) when we
dealt with the 1-D case. Here we don’t need the h'Z, term appearing in (4.2.39),
which corresponded to the correction term h'v-. since we adopted the new 4-th
order vorticity formula (4.3.8) instead of Brilev's formula. The purpose of the
introduction of h*Z is still to maintain the higher order consistency needed in the
truncation error estimate below for the discrete derivatives of the constructed

vorticity. as we can see in the following lemma. which is analogous to Lemma

Lemma 4.3.1 We have at grid points 0 < i{.j < N.

(4.3.15) ) = we + RS + OR®)||welles -

Proof. Our construction of 2 and ¥ and Tavlor expansion of v, and w,

indicate that at grid points (z,,y;), 1 <&, j <V - 1.

h‘.’ hQ o h‘.’
(4.3.16) (1+FA,,)Q = (Ah+ED;D;)¢e = (1+FAh)uJe+h'¥;'+O(h6)HL‘p”Cs.
where © was introduced in (4.3.14). (4.3.16) gives
Q1= h* 4~ e - 6 6
(4.3.17) (1 + —Ah)( —we —h'D) = —1—.,Ahw+0(h Mwelles = O(R®)|[eelles -
since the second order differences of = is bounded by |[v.||cs. (4.3.17) along with
(14.3.13). the boundary condition for 2, and the property that the matrix [+ Ah

is uniformly diagonally dominant, lead to (4.3.15). Lemma 4.3.1 is proved.

One direct consequence of (4.3.13) is that

h? h?
(1.3.18) (A + 5 —D;D)) = (Dh + 5 —D;D%)w. + O(hY)|lvelics -

which along with Tavlor expansion of w, that
2

h
(4.3.19) (Dg + ——D D) = (1 + I—QA)A.JC + O(hY||eellen
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indicates the estimate of our truncation error for the diffusion term

: h? o e h? . 4
(4.3.20) (An + EDsz)Q =(1+ EA)A.‘:( + O(R M elles -

Next we look at the convection term. which is the AL term applied to L. V°
and € introduced in (4.3.3). First we estimate the difference between (. |” and
u,. Our definition of L". V" and Taylor expansion of ¢ shows that at the grid

points (r,.y,). 0 <i.j < .V:

(4.3.21)
- 1 = 5 - 1 a5 5
U =u + %h"a,}ue + O Wwelles . V= ve — %/ff}zt‘e + O(h)eelles -
The combination of (4.3.21) and (4.3.13) gives that

— R . — h?
(43.22)  Do(1+ =D)(UQ) = De(1 + D) (uewe) + O(hHYlivellesllwelles -

which along with the Taylor expansion of u.w. that

Bl + DY) = (L+ %A)az(uw + O(h"l[uewellcs
(1.3.23) .

= (1 + %A)at(ueﬂ'"e) + O(h\{)nl«'eHCGHU'eH('-‘ .

leads to the estimate that

~ R . h? ‘
(‘132‘1) Dr(l + %D;)(LQ) = (1 + Fa)az(uew'e) + O(hl)“‘v'e”('c”'—?e“C"‘ .

The other convection terms can be treated similarly

- = ,2 P . h2
(43.23)  Dy(1+ =DH(VQ) = (1 + =08)3,(vewe) + O(h)l|eellcelluellcs

h? ~ ~ h?
(4.3.26) %Ah(L'D,Q-é-\'DyQ) = EA(ueazue-é-veay.uy)+O(h“)||wellc-s|]L'ci}(--.

The treatment of time marching term is also similar to that of 1-D case.
Note that at the grid points (r,.y;), 1 <i,j <N - 1.
(4.3.27)

a(l + ﬁah)Q = (An+ E‘DrDy)a{Ue

h? h? oo\,
= (8 + 500+ 8)) + 50;9;)0e + O(RY)[|0eve| s
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. h? .
where the first term is exactly (1+ I—OA)BMe. and the estimate of the second term

will resort to the Schauder estimate to the following Poisson equation satisfied

by e
A(@twe) = at(&'e . in Q.
(4.3.28)
Qe =0, on[.
which leads to
(43.29)  {Bitelicss < Clidwellcra < Cllledlicse + flefere s .

where in the second step we applied our original NSE again. as we did in the 1-D

case. Then we arrive at

h2 h2
(4.3.30) O (1+ %Ah)Q =1+ I;A)atwe +O(h4)(”t’e“C*'" +llwellcrallvellesa) -

Finally. the combination of (4.3.20), (4.3.24)-(4.3.26) and (4.3.30) completes
the truncation error analysis for the momentum equation: at grid points (r,.y,).

1<ij<N-—1.

(4.3.31)
1+ Eana0 =« b0+ Loywea) + D,a0 + Lohaa) - Eayb.a+vb,a
1"7"1_5 h)0E2 4 ( TE y)( )+ y(1+g r)(-)_ﬁ a( it T y)
S
=v(dp + —IG‘D;D;)Q +O(hY)(l[ellcme + [luellesllueicr) -

where we applied the NSE. which implies that (1 + 2A)(Quwe + V- (uew) —
I/A..d,,) = 0.
The estimate of Q2 on the boundary is very straightforward here. As we can

see. one-sided Taylor expansion of v, at the boundaryv shows that

1 8 1
(4.3.32) (we)ro = F(S‘I"l - 3\1’,’,2 + ‘9"‘1’,_3 - -S-\I’,_A() + O(h4)”LieH(-»s .

whose combination with our definition of €, in (4.3.13) and the fact that {2, <

Cllte]lcs. indicates the vorticity boundary condition up to O(h') error:

1 8 L
(4.3.33) Do = hj(s‘px,l - 3¥;o + §‘I’x.3 - g‘l’m) +Oh")leellen .
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4.3.3 Error estimates
For 0 < i.; < N. we define
(4.3.34)

Ly = Ly — ‘I’l.j - Wiy T Wiy T Qi._] - Wy, = Uy — L gy Ly = U, — ‘x._} -

In addition. the error function for T is introduced here at grid points (r,.y,).

1<ij<N-1
= = — raY , 12 ~
(-1,3.-37)) Wy = w,-,j - Qi‘J = (1 T EAh)w‘-J .

Our consistency analyvsis in 4.3.1 shows that

(- h% o
Ow + L =v(QDp + —G—D;D;)w +f.
h2 e ~ h2 _ -
(4.3.36) ) (Ah+€D;D;)UJ=(1+ﬁAh)-'~ cir=0.
- - h2 95 -~ - - llz B -~
i=-D,(1-+Dyv. v=D:(1-FD;v

where the local truncation error | f| < Ch||uel|lcro (1+]{ue|lcs). and the linearized

convection error L is represented as

— h? ~ h? _,
c=D.(1+ %D;)(fiQ +ud) + D, (1 + 5 D2)(FQ + ¢3)
(4.3.37) b2 B _ A2 _ -
-5 (uD:5 + vDy@) = 3 3(@D:Q + ED,9).

On the boundary (say near I, j = 0). we have

1, - ~ 8 ~
<o = 7;,(81‘«‘:.1 — 32 + 51,-”;',3 - §L""’) + h"e,.
- - ~ 3~ | -
vy o = 10w, — 3¢ + 5”!./),',3 - IL',_.; + O(h")lluell(_-a .

(4.3.38)

where lg] < Cllu.ll¢s. The first equality in (4.3.38) comes from our numeri-
cal boundary condition (4.3.8) and our estimate (4.3.33): the second estimate in
(4.3.38) comes from our numerical "ghost point™ value (4.3.5) and Tavlor expan-

ston of ¢.
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Our strategy of estimating the error functions is similar to that of 1-D case.
Multiplyving the vorticity error equation in (4.3.36) by —(1 + '%:;A,,)c.f. using the
fact that ¢ vanishes on the boundary which indicates that (the derivation of the

following identity is similar to that of (4.2.14))

h? h? h? 1dE
(4.3.39) —((1‘*% at\-d) = —<(1+ Ah)b (Ah-r- D? D )@u.) =57
where E is denoted as
(1.3.40)
h? h?
= [[Vaul])? - —|l—\hbl| - —IID D, + = (HD D:u|]® + |[D,D2u?).

and applyving Cauchy inequality for ((1 + ';—;)Ah'@, f). we arrive at

-+

1dE
(4.3.41) 2 dt <(

h” S8 (Ah+h—D2 > <(1+—A,,z, c>

< ClelP + CllfI2.
The estimates of the diffusion and convection terms are presented in the
following two lemmas. The proofs of them will be given in Section 4.4.
Lemma 4.3.2 For sufficiently small h, we have

2

o h -~ h? L, 3 -, .
(4.3.42) ((1 + EA,,)U. (A + —6—DID;)w) > E”“’”- — hY.

Lemma 4.3.3 Assume a-prior that the error function for the velocity field satisfy
(4.3.43) lalfr= < h.

then we have

(4.3.14) ,< (1+ —-_\.,, . c>’ < ClIVABI? + SIS + 42

where £ was defined in (4.3.37) and C = M‘—HOL)-f-C(?-w‘-HueHCx )2+Clw. |l -

Then we go back to our convergence analysis. First we assume that (4.3.43)
holds. Plugging (4.3.44). (4.3.42) back into (4.3.41), we obtain

1dE
(4.3.45) =< (l+ VIRY + CIFI? + CllYIR + (€ + O)|Vae? - —IIwH~
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As we can see. ||u||? can be absorbed in the coefficient of ||[V,i|? since the
Poincare inequality for w: |[v]|2 < C||Viu||2 can be applied here. [ntegrating in

time for (4.3.45) gives us
- v T =12 T 2 = r TS
(1.3.46)  E + —/ 15112dt < c/ I£112 dt +C/ WTacl2dt ~ CTh® .
8 Jo 0 0

Since the property of v that it vanishes on the boundary indicates

- ~ ~ ., h? - h? -~
(4.3.47) IVrel]® < 3([|Vaell” - 1—,7”4\110'”' - E”DrDy“'H-) .

which implies that %HV,,:Z”Q < E. we arrive at
s 3 T T ST
(£.3.48) [[Vac|® + —8—/0 13112 dt sc/o (£ + %) dt +C/ I a2 dt .
0

By Gronwall inequality. we have

192817 < Coxp {CT} [T(IFC- o) + 1) ds

(4.3.49) COT

< Chfexp { T Hluelina (1 + fuclics)*

since €' < €T where C* was introduced after (4.3.9). Thus. we have proved

ceT
(4.3.50) lw(-. ) — ()l < Ch¥lluelcra (1 + Iluellcs)exx){ } :

which implies (4.3.9). Using the inverse inequality. we have
(4.3.51) @]~ < Ch3.

Now we can resort to a standard trick which asserts that (4.3.43) will never be

violated if & is small enough. Theorem 1.3.1 is proved.
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4.4 Proof of the Lemmas in Section 4.3

For the convenience of the analysis below. we define [|Z|i- by
(4.4.1) Izl = Y I2,h%.
0<i <N
Note that the difference between [|&f|w and ||&|| is that |[Z{]w involves the bound-
ary values of 2.
To prove Lemma 4.3.2. the estimate of the diffusion term. some preliminary
results in the following Lemma 4.4.1 are needed.

Lemma 4.4.1 We have

2 T2 - 9 =2
(4.4.2) IDIe||® + [|D2u|)® < gl

W h?
— DD + (|1 + =

2 2,~,‘2< il
. = D)DCI < 113

(4.4.3) (1 +

Proof of Lemmma 4.4.1  The proof of Lemma 4.4.1 is similar to Lemma 4.2.1
in 1-D case. Since L_',_J |r= 0. we can Sine transform {l;z.j} on both directions.
Lo,

(4.4.4) E‘,_J = Z L;k‘( sin(kwz;) sin(éxy,) .
k.

Again. Parserval equality gives

-~ - 2
(4.4.3) > () =X |0k -
1.7 k.L
[f we introduce
1 ., kmwh 4 ., émh
(1.4.6) fk= —h—_lsln (T) g[——ﬁbln (—2—)

we obtain the Fourier expansions of D2y and Dgw

(4.1.7) Dzl.‘,‘_, = Z S '::k.l . D;ZU:‘,‘J = Z 9 L:k.l .

k. kd
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which in turn implies that

h ,’;
(1.4.8) Z[w,” =>| (A,ﬁ-gDzDz) v 2= S g+ fi + —fkgi [L

1. k.£
Similarly. we have
h? T2
S+ 59 fkl' i .
[ ¥4

I+ _6'fk)g[|2!';k.f_’]~ :
k£

h-2 2 27 2
Z 1+ —D;)D;dzi.,l“

2l DDy,

(4.4.9)

On the other hand. the fact that —3% < fi, g¢ < 0 shows that

h2 9 h2 DY h2 >
(4.4.10) l9e + fi + —G—fkgzl" > [(1+ ggz)fkl" + (1 + Efk)gzl'-
h*® 8
(4.4.11) lge + fx + ‘G_fkgll > (ff+g7 - —fkgz) §(fk +97) -

by direct calculations. The combination of (4.4.8). (4.4.9) and (4.4.10) gives us
(4.4.3). (4.4.2) can be argued in a similar fashion. Lemma 4.4.1 is proved.

Now we go back our proof of Lemma 4.3.2.

Proof of Lemma 4.3.2 Summing by parts and keeping in mind that ¢ |;=

0. (which is similar to the process in (4.2.15)). we have

(4.4.12)

h? R, h? h?
(L 505 (B + D;Dy)w> ((Bn+ TDIDHE. (1+ SA0)Z) + B.
where the first term is exactly [|5]|? since (Ap + £ D2D2)v = (1 + £4,)Z = 2.

and the boundary term B can be decomposed as three parts B = B, + B, + B;s.
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where
— h? 2y ~ h? 2y < ~
B, = ; ((1 + E—Dz)wi.l'wt.o + (1 + FD})L}.,\‘-V««R..\'))
-1 h2 ye ~ N h2 e - _
+ ((1 -+ FD;,)(ULJ"‘JO.J' + (1 -+ -G—D;)L'-\'—l..}""'.\'q))
J=1
ht Y-l Yy~ - Yy~ ,
(4.4.13) B, = = S (Div D230 + Divin D22, v)
= =1
N1

—Z LIJD&OJ+DL\_1JD«J\J)

(Cr1w00 + U No1@oN + UNC11@N0 + UN o N 1EN.N) -

Next we estimate the three boundary terms separately.

Lemma 4.4.2 We have the estimate

1 3.~
4.4.14 B, > —B, — >||Z||> - Ch°®.
(4410 > B, - SlEIP - C
where B,. is introduced as
N-1 N—
(4.4.15) Z(z. L+ uely) +Z vi_i,)-

N1
Proof. The boundary condition for & in (4.3.38) implies that Z (1 +

=1

h?
é D Ve, 1<.0 includes two parts: [; and I». where
1 2! h? . - ~ ~ 8~ 1~
I = = Z (1 4+ —=D2)u 1 (8ui1 — 3Wia + —tyz — sthy).
h? 6 9 8
(4.4.16) . 2
. )2
[2 =h! Z( T—G—D )L"',‘.le,'.
1=1
The term [, can be controlled by Cauchy inequality directly: first. summing by
N-1 2
~ h=
parts gives [, = h' Z vl + ED;)E"O' then we have
=1
(4 1 l_) [ S 1 ol l:,-) 9 z / 10((1 + D2) ) l plty L"z,l C}Q
. 2 —— — — - Ch™.
V= T35 & pe l €) =736 & R

=1
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since |e, o] < Cllu.||cs. Our main concern will be /;. Similar to the argument in
(4.3.2.29). the term 8, — vy + g_L’;','.g — %w,-_., can be rewritten as

(4.4.18)
8 -~ 1 ~ 25 ~ 115 ~ 23

- Q.. D> =022 7 Loa o=
SL';.x—3L‘..2*"§L‘x.3—§L‘,.4 =% bu—_—h (D yU)i.l+:§gh (Dyl")z.z—gh (Dyu)s-

which in turn implies that /| can be expressed as

(4.4.19)
25 Y- h? -~ 115 ¥=! h?
I = é__,'Z( 1+’guleLzl)——szl(1"'—D)(D
=1
23 - h'3 L~
+— L',J(l"l"‘ )(D ,0——Zb,1(1+— )(D;L),;;
36 =1 6

where we summed by parts again. since ¥ [r= 0. Each term in /| can be estimated

by Cauchy inequality

(4.4.20)
Nobo h2 - L y=t
;(L'zl':’ELle Lzl)zgle Wiy -
11)~ h? - 1 1152 - 3., h?
~ =yt (L E DD 2 = o = il = Sh ]( = p2)(D L)”‘ h
23 - h> _, Yy = 1 232 - 3, , - 2,
5‘6‘&.1(1 + _‘D')(D;L'_)x,-_) > —W@‘wl 5= —h' ( -+ -—D;)(D;L) h*
1 h? 112 2,
Sm(l*?D J(D20),s > — e Szlb,q ——h D ) (D2).s| R
Since %{5—’ - %(—_,’— + % + ;—) > 5“‘—2. we have
1'3 N1 - ] 3 N-1 h.. - 2
1421 I > —— SNCIL. h- 27
(4.4.21) L2 35 ; leal® = 2h > _123(1+ D?)Dlv.,
= 1= 1=1,

The combination of I} and [, gives

DL h? -

1+ =D,

!z_:l( 6 .Z')L N .0

(4-[_)2) AN =1 h') 2
.x"——z > ( )DL,J Ch®
: y=1.23
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The treatment of the other three boundary terms is exactly the same. Finally

we obtain

N-1N-1
B> B -2 Y Y I+ S Dypic, i
3h? i=1 ;=1
(4.4.23) Nl N
_.—h Z Z ](1+— Dzz,l,_,l" Ch®.
=1 j=1

where B,. was defined in (4.4.13). The combination of (4.4.23) and (4.4.3) in
Lemima {.4.1 implies (4.4.14). This completes the proof of Lemma 4.4.2.
B, can be treated in a similar fashion. We still only look at the term

Z Df_l::,.[D.f.;',.g here. Once again, (4.3.38), the boundary condition for = in-

dicates that Z D?v, D22, includes two parts: I; and [;. which are denoted

H

as
Iy = = '\f D2v, i (8D20;, — 3D2ui2 + Sp2i, - LD )
37 75 i. Uiz —D ey — s DIt y) .
37 3 Z Vs 1 9 373 1
(4.4.24) o
[4 = h‘ DiL‘z.lDiei .

The estimate of /3 and [, is similar to that of [, and [,. respectively. Repeating
the arguments in the proof of Lemma 4.4.2, we can get (the detail is omitted
here)

(4.4.25) B, > ——h*[lD D2y||* - Ch®.

On the other hand. the fact that ||D;’D;fu-|l < ”D2U” and || D} D2y < i D;JH

implies
(1.4.26)

212 T2 1 M2 N2 " 9 =2
IDEDC? = SUIDDICH + DD < IDZGIP + DR < IS,

where in the last step we applied (4.4.2) in Lemma 4.4.1. Substituting (4.4.26)

into (4.4.23). we arrive at

1 - .
1.4.27 B, > -—|IZl|? - Ch®.
( ‘) 2 2 16[! - -cC
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Finallv. B3 can be controlled by standard Cauchy inequality (still. we onlyv
look at the term iy Zog)

2 2
L'ya 1 5.5 L vy,

_ hw > -
h2 127700 = 12 p2

= Chfeelies -

| l
(4.4.28) 6L'1,1~’0.0 > 2

where in the last step we used the fact that |Zg 9| < Ch*||we]lcs by our numerical
<« and our construction of €2 in §3.3.1. As we can see, the first term appearing on
the right hand side of (4.4.28) can be absorbed in the B, term.

. 1 9
(4.1.29) By 2 — 5B, — Ch°.

Finally. the combination of (4.4.14), (4.4.27) and (4.4.29) shows that B >
—21IZ[|* — h%. whose substitution in (4.4.12) is exactly (4.3.42). Thus we finish

the proof of Lemma 4.3.2.

Before we proceed to the proof of Lemma 4.3.3, we need to have a good
estimate of [|Z||};- introduced in (4.4.1). which includes the boundary values of Z.

Lemma 4.4.3 We have

~12 =12 C ~ 0
(4.4.30) 1215 < CIRN® + SHVav]? + Ch2.

Proof. Step 1. Establish a bound for [|5]!?

We follow the pattern of analysis in the proof of Lemma 4.4.1 We need to

0

decompose & since it does not vanish on the boundary: let ©° and &% be the

interior part and boundary part of Z. respectively, i.e. & = &% + Z°. such that
~0 -~ ~b . - ‘v
=2, . <, =0. for1 <z,7 < N-1.
(4.4.31) e i
Z),=0. P, =G, onTl,
=0 . .
and define T = (1 Ah) . Since Z° vanishes on the boundary. we can Sine

transform {.Zf’]} both in the i-direction and j-direction, i.e.

(4.4.32) .u!} Zw‘ ¢ sin(kwr,) sin(ény;) .
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Then. Parserval equality applied to 2° gives

(4.4.33) S0 Zld“r.
t.J

1y

Similarly. we have D32Z° ka f;z‘,. and D; ?J Zg['j'(,:',. as in (4.4.6) and
k.l k.

(4.4.7). which in turn indicates that
2120 12
(4434 I Zl 1T—Ah)w )= kzlll*'r;(fk*-gzl k]
[ .

The combination of (4.4.33). (4.4.34), along with the fact that % <1+ '{—.:(fk +

ge) < 1. shows that

- =0 1 PR
(4.4.35) I = Gl

On the other hand. we note that f;?.] =T for 2 <i.j <N -2 and near
the boundary (say at j = 1).
(4‘4'36) :“"x,ll - (“"l.l - E’-"‘x 0) g ﬁ;‘"ll m 1.0
and near the corner (say at i = 1. j = 1)

- =0 2 = I _ 1 ~ 2 7;2 7 ~2 Lo~2
(4.4.37) =" =G - -1.—)-‘«'1.0 - 1__)'-*«'0.1)- < é‘ 11+ ?5(4‘«'1.0 + Lg) -
which indicates that

N-1

~1

(4-438) 12717 < ElS(°+ _1(2 R (120l + [Sin >+Z R (1@, 1 + 123, 1)) -

The combination of (4.4.38) and (4.4.35) gives us

2o 2= Ty
(4.4.39) 1211 < SISI° + hB.,
where B_ is the total sum of boundary terms for Z:
! ity 2 4
(4.1.40) Z (IS0l + [Z0n?) Z (Do 1% + |2~ ,17)
J=1
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Step 2. (4.4.30) is a direct consequence of (4.4.39) and our boundary con-
dition for vorticity error function as in (4.3.38):
By our definition of |||y in (4.4.1). we have ||5]|3- = ||Z||* + R?B... where
B, was defined in (4.1.40). whose substitution into (4.4.30) leads to [|Z]|? <
ZIZ|12 + 2R*B_.. Then the remaining task is to control B,. For simplicity we
N-1

just look at the first term Y Z7,. Similar to the proof of the diffusion term in
=1

The term appearing in the parenthesis in (4.3.38) can be rewritten as (4.4.18).

whose substitution into (4.3.38) shows that

‘ 2 T2 -3’ 2
rY(D2u)E, + S hY(Dv)i, +

e 2/14(0315)';’_3) + 2h%e?,.

8

Similar results are available for &2 y. Z7 . and &%, ;. Then we arrive at

C N1 N-—1 Nl N—1 \
B_S FBL+CZZDL/‘J) +CZ: Z(DL’IJ 2R3E
(4.4.42) - =1 é= <
< SlIVaCl® + S DR + | Djul?) + 2% .

where B,. was defined in (4.4.15) and £ is introduced as

P
|

1 N—1
2, 2 , 2 2
(el0 +€lx) + D_(e5, +ex ).
1 J=1

Cn
i

(4.4.43)

13

I

In the second step of (4.4.42). we absorbed all the terms of B, appearing in

(14.15) into [|[V4C[% since h2(E2220)2 = 2 (by the fact that tng = 0) is
included in |[Vae||2. Moreover. the sccond term appearing on the right hand
side of (4.4.42) can be controlled by the order of ||&||?> via (4.4.2) in Lemma
4.4.1. In addition. we can see that 2h*E < Ch®|lu.||%s since [e,o] < Cllu.||cs.
Plugging these estimates back into (4.4.42). along with our previous argument
that ||Z]|2 < 2HiZ? + 2R%B..

-

we obtain (4.4.30).

Now we can continue our proof of Lemma 4.3.3.
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Proof of Lemma 4.3.3 \We decompose L into four parts: £ = £, + £, +

L3 + L. where

(4.4.44) |
Ly=D.(1+ %Dj)(m +uZ).  Ly=D,(1+ %D;)(EQ +el).
Ly = —’1—’;& (uD:s+eDeZ).  Ly= —I—;A (aD:Q + #D.Q) .

We will show that the inner product of (1 + Ah)v with each term in (4.4.44)

is bounded by the following result

(4-4.43) CIIVABIP + S5 IBI2 + h°.

i TEAU L) <

v ,J_Ir—‘

32 (1 + “Le“Co

9

)"+ Clluel|cs-

for i = 1.2.3. 4. where C = + C(2 + ||ueller

We only give the estimate of {(1 + ’:—;Ah)ﬁ. L,). The other three terms can
be treated in a similar fashion. Summing by parts. we have

h* h?
<(1 + 55000 Da(1+ T D)@ + u.u)>
(4.4.16) b b2
—<DI(1 + TDNE(1+ S AR + ch')> +BL, .
where BL, includes boundary terms
(4.4.47)
1

, h? - = 1, h? ~ ~

BL, = 6/1" Z(l + —,Ah)‘U,,l‘DI(UQ)z.o + —h' Z(l + —"Ah)u'i..\'—l'Dx(llQ)n...\'
h?

hZD 1+FD2) ,!(uQ),o—.-—hzzD(l-F L:\—l (), v .

\We look at the right hand side of (4.4.46) term by term. By our construction of

 as in (4.3.11)-(4.3.14) indicates that
(4.4.48) [[Q6le= < CUIQML= + 12 Ir lle<) < CUleeller + [[elles) < Clluelles -
which in turn gives that

h? h?
(4.449)  l(1 + —Ah)(ltQ W= liQl<ll(l + Z 80l < Cliuelles Vil -
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where in the last step we applied the result that ||Z|| < 2||V,e|| by the relation

between & and ¢-. (4.4.49) along with the fact that

*y

- ~ h® ., - _ - -
(4.4.50) I1D:(1+ = Dy)ull < iD=l < IVav]l.
since v vanishes on the boundary. and Cauchy inequality gives

= I N h* h? - I~ 2
(1.451) (De(1 + T D)1+ 520 ED))| < Clluelles [V aCl.

Now we look at the inner product of — D, (1 + %Dg)w with (1 + '{—;Ah)(u.}).
First. we can rewrite the latter as
2

A2 h N
(4.452) (1+ éAh)(ui’)w = (1 + 7380 + DL = w5, + DL

where DL includes four parts: 5 (1,_1,—t,,)Zi—1; 15 (Uis15—Uiy)Ti-1,. 5(Uy-1—
Uy )i -1 ﬁ(u,_ﬁl —U,,)&, ;-1 Our construction of U in (4.3.10) and the a-prior

assumption (4.3.43) gives
(4.4.53) Hulle= < ([Ufle= + llalle= < liveller +h < ltellco + 1 = C

which leads to

(4.4.54) ]<5 (1+ —D?). uw>l
Furthermore. we have
(4‘155) ”ul,_] - uz—l.j”L’c S “L’-l._] - [«‘z-l._;“L" + ”ﬁ,‘_] —ai—l.j“[‘"c S h”'-'e“Cl’ +2h.

and similar result holds for the other three neighboring points, which shows that
IDLY < C(jjucllcr + 2)h||Z||w - Note that {|Z|}- involves the boundary values of

2. Then we arrive at

— 2 -
(4.4.56) KD,(l + —6—D;)t'.D£>’ < Clluller + 2)20Vadl® + RIS .
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and applying Lemma 4.4.3. we obtain

|<5x(1 + %;Dj)['. Dc>f < C(llueller + 2)2Vhe|? + CRASI? + Ch'Y .

(44:57) |

The combination of (4.4.52). (4.4.55) and (4.4.57) shows that

h2 5.~ h2 - ~ Vo o~ 5 1
—G—D')L‘- (I + —A,,)(u¢)>l < Cof|Vae|® + 3—2”w”' + 5/19-

(4.4.58) KDI(I + = D? >

[

where Cy = %’» + C(Jliellcr + 2)2.

Applying the similar argument to BL, we can get
~ 1
(4.4.59) BL, < C||Vau|* + 3/:9.

\We omit the detail here. Finally. combining (4.4.31). (4.4.58). (4.4.39). we arrive
at (4.4.45) for i = 1. The other three terms can be estimated in a similar fashion.

Then we proved Lemma 4.3.3.
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Table 4.1: Errors and order of accuracy for stream function and vorticity at ¢t = |
when the fourth order schemes with Briley’s formula at the boundary are used.
CFL=3. where CFL= Z&{  we took At = 1Ar when N=32.

Are

I | NV ]| L! error [LT order || L? error | L order || L* error | L= order |

32 || 4.01e-06 3.22e-06 3.75e-06
vl 64 || 2.60e-07 3.95 2.17e-07 3.90 2.67e-07 3.81
128 || 1.67e-08 3.96 1.43e-08 3.92 1.77e-08 3.91
256 || 1.06e-09 3.98 9.18e-10 3.96 1.14e-09 3.96
32 | 6.15e-05 8.75e-05 1.81e-04
« | 64 | 3.41e-06 1.17 1.71e-06 4.21 9.60e-06 4.23
128 |j 1.96e-07 4.12 2.66e-07 1.14 5.30e-07 1.18
256 || 1.16e-08 1.07 1.56e-08 4.09 3.06e-08 4.11
Table 4.2: Errors and order of accuracy for stream function and vorticity at

= 1 when the fourth order scheme with new vorticity boundary condition
are used. CFL=1, where CFL= Z&! we took At = 1Az when N=32.

| .V || L' error | L" order || L? error | L? order || L> error | L™ order ]

32 || 7.52e-06 6.20e-06 6.87e-06
|| 64 || 4.38e-07 4.10 3.68e-07 1.07 4.14e-07 4.05
' 128 || 2.63e-08 1.06 2.23e-08 4.04 2.53e-08 4.03
256 || 1.61e-09 4.03 1.37e-09 4.02 1.57e-09 4.01

5 32 ][ 1.24e-05 1.58e-05 3.29e-05
b || 64 | 4.74e-07 1.71 5.38e-07 4.87 1.10e-06 4.90
i 128 || 1.76e-08 1.75 1.69e-08 5.00 3.04e-08 52.17
’ 256 || 7.37e-10 1.58 6.29e-10 4.74 7.56e-10 5.32
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CHAPTER 5
FLOW ON MULTI-CONNECTED DOMAIN

5.1 Preliminary

The homogeneous. incompressible Navier-Stokes equations (NSE) in velocity-

pressure formulation with no-slip boundary condition can be written as

1

u, +(u-V)u+Vp = JAN T in 2,
Re
(5.1.1) V-u=20. in .
u=20, on 9Jf) .

where u = (u, v) is the velocity. p is the pressure and Re is the Reyvnolds number.
For simplicity, we denote v = #. For the multi-connected domain, 99 is assumed
to be composed of closed. non-intersecting segments [';, ¢ = 1,.... k, enclosed by
the closed curve g, iie. IN0 = LU, U . Ul The k regions with the
boundaries [}, [, ... Ty are called the £ holes of the domain Q. See Fig. 5.1
below.

The no penetration. no-slip boundary condition for the velocity is given by
u ll‘o: 0. u |r|= 0,... u |rk“—‘ 0.

There are three main difficulties in the numerical simulation of incompress-
ible flow in the primitive formulation:

1. The implementation of the incompressibility constraint V-u = 0.

2. There is no dynamic equation and no boundary condition for the pressure

p- Indeed. p is mainly a Lagrange multiplier to assure the incompressibility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

Figure 5.1: A multi-connected Domain

3. The implementation of the no penetration and no-slip boundary condi-
tion.
In 2D case. the first and second difficulties can be eliminated in the vorticity-

stream function formulation

Ow + (u-Vw =vQAw.

(5.1.2) A =w.
u=—0gyu. v = 0.
where the vorticity is introduced as w = V x u = —dyu + ad.v.

The no penetration boundary condition for u indicates that
(5.1.3) vir=0GC,. for 0 <: < k.
where C, are constants: while the no-slip boundary condition for u shows that
at.

(5.1.4) (—); =0. at each [, .
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The remaining difficulty involved in the formulation (5.1.2) is the boundary
condition:

1. There are two boundary conditions (5.1.3). (5.1.4) for the stream function.
while there is no boundary condition for the vorticity.

2. How to determine the constants of the stream function, C;, Cs. ... .Ck.
at the &£ "holes”, respectivelv?

The methodology to overcome the first difficulty has been described in detail
in [ELV'1]. [ELV2] by E and Liu: the Dirichlet boundary condition (3.1.3) can
be applied to solve the stream function by the Poisson equation in (5.1.2), which
states the kinematic relationship between ¢ and w: the no-slip boundary condi-
tion (5.1.4) can be converted into the local formula for the vorticity boundary
condition, which can be implemented very effectively by the explicit treatment.

This approach works perfectly in the case of the simply-connected domain.
However. if the domain is multi-connected. the second difficulty, which is a well-

known difficulty, arises. This topic will be the main focus of this chapter.

The starting point of our method is the following equivalent formulation of
the incompressible NSE for the multi-connected domain in terms of vorticityv-

stream function formulation

(5.1.5a) Ow +(u-Viw =vAs.
(5.1.5b) Av =
(5.1.5¢) vlr,=C,. ()_L/, =0. at each T;.
on
-y - dw
(3.1.5d) — =0. for 0 << k.
r. dn
(3.1.5e) u= —0,v =t
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Since the stream function is uniquely determined up to a constant. the
constant at the outer boundary [y can be automatically set as 0. i.e. Cy = 0.

The derivation of the boundary condition [ 24 = 0 in (5.1.5d) is given
below: on each boundary [',. multiplying the momentum equation in (5.1.1) with
7. where 7 is the unit tangential vector along the boundary. and using the fact
that the velocity u vanishes on the boundary lead to

'_(32_ dw

87—_’/37;-' on [,.

(5.1.6)

Integrating (5.1.6) along the boundary [,. keeping in mind that p is a single-
valued function, we arrive at the boundary condition in (5.1.5d). Such derivation

can also been found in [GPM], [GMD]. [MA]. [TTE].

5.2 The Second Order Scheme

For simplicity of presentation. the domain in Fig. 3.2 is used to describe

the scheme.

In Fig. 5.2, 092 is composed of the outer closed boundary I'y: 4, B,C, D,
and only one segment [';: ABCD. where 4,B,CD,. ABCD are [0, 3]? and [1. 2]
boxes. respectively. The other geometries of multi-connected domain can be dealt
with in a similar way. [n more detail. 4. B. C'. D have grid indices (n, n), (n.m).
(m.m). and (m.n), and 4,. By, C,. D; have grid indices (0,0), (0, V). (.V..V).

(.N. 0). respectively. n and m are given by n = %;\f'. m = %.’\/ and the grid size
is chosen as Az = Ay = h. N, is denoted as the number of interior grid points.
D.. D? are denoted as the standard centered difference operators corresponding
to J;. 7. respectively.

The kev part in the numerical simulation of the system (5.1.3) is the com-

putation of Poisson equation (5.1.5b) and enforcement of boundary conditions
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(5.1.5¢). (5.1.5d). We first describe the basic computational strategy to deal
with this part. The Laplacian operator in (5.1.5b) can be approximated by sec-
ond order finite difference operator A, = D? + Dg, and the use of Dirichlet

boundary condition in (53.1.5¢) leads to the following discrete system

_ Aht"-:.;:. in .
(5.2.1)
vlr=0. uvin=0C.

Yet. the constant C is not known yvet. The remaining task is to obtain such

constant by the boundary condition in (5.1.5d).

The no-slip boundary condition % = 0 can be converted into the boundarv

condition for the vorticity by local formulas, such as Thom’s formula. as argued
in [ELV'1]. For example. on the boundary section A;D,. j = 0. Thom's formula
gives

200 — 20

(5.2.2) s = =

and on AD. one boundary section of I';. Thom's formula indicates

2L'z.n—l - 2C'x.n

(5.2.3) “tn = h?

Similar formulas can be applied to other boundary sections.

The boundary condition [ (;’—,;.“L = 0 can be implemented by finite difference
approximation. For the convenience of the presentation below, some notations
are introduced.

Notation. For any discrete field f on the grid points (:.j). we define

(k)

‘-)—)4) f =/ fn—k._] +/ fx.mok +/ fm+k.] +’/ fi,n—k-,
r A8 BC D DA

where the trapezoid rule is applied to the integration at each boundary sections.

For example. on the section AB.

1 o !
(-)-2-)) [IB fn—k.] = h (;fn—k.n -+ Z fn—k.j + 5fn—k.m) .

J=n-+1
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4“"71—[.1 —&n-2,; — 3“"11.]

Using the one-sided difference operator 3 as the sec-
ond order approximation to (dﬁ (at the boundary section AB). and plugging into

the boundary condition (5.1.5d) results in

(0) 1 (D 1 r(2
A! .u—g e - 5 r «< .

The substitution of Thom's formula (5.2.3) into the left hand side of (5.2.6). along

(5.2.6)

with the fact that v: is a constant C; on the boundary I';, gives

1 (1) 4 (1) 1 (2)
- _— by = ——— [ — —hZ/ <+ —h2/ . .
(5.2.7) Cy lfll(/n v -z [ L

where [["y| is the length of the boundary I',. In the case of Fig. 5.2. |[I'|| = 1.

V)

The formula (5.2.7) plays the role of a bridge between the constant C, and
the boundary condition Ir, g;’—l = 0: Different C; leads to different v, ;. which. in
turn. results in different vorticity . on the boundary. by Thom’s formula (5.2.2)
and (5.2.3). then different [p, g‘;i On the other hand. this integration has to
be 0 according to (5.1.53d). the equivalent formulation of incompressible NSE in
vorticity-stream function formulation.

The coupled system (5.2.1). (5.2.7) will be used to compute ¥ and the
constant C; by iteration. as will be explained in detail later. Let’s first count
the number of equations and unknowns of it: there are .V, + 1 unknowns (where
.\ is the number of interior grid points). including .V; number of ¥;; at interior
grid points and the boundary value C;: the number of equations is also .V; + 1:
.V, equations in (5.2.1) and one additional equation (5.2.7).

As argued above. the right hand side of (5.2.7) depends on C;. An operator
o can be introduced by (5.2.7): for any constant C. denote ¢ as the solution of
the system

Dpr = 2. in €.

(5.2.8)
Clrp=0. v |r=C.
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and define

1 (n i, 1 . (@
5.2.9 ‘C=—/ -——h-’/ 4:+—h"’/ 2).
(5.2.9) o(C) lrli( . v 3 . 3 5 )

It should be noted that the term related to ¢ at the right side of (5.2.9)
depends on C. according to (5.2.8). Obviously, the fixed point of 0. i.e. the
constant C such that o(C) = C. along with ¢ determined by (3.2.8), is exactly
the solution of the coupled svstem (5.2.1). (5.2.7). The existence and uniqueness
of the fixed point can be guaranteed by the following Proposition, which states

that o is in fact a contraction mapping.

Proposition 5.2.1 For any C,. C, € R. we have
(5.2.10) [0(Cy) — o(Ca)| < C*IC, = Caf. where C*=1—-nh.

Proof. Denote ¢'!. ©? be the solutions of the system (5.2.8) with the
boundary condition v! |, = Cy. 2 [, = Cs. respectively. Define v = ¢! — ¢2. It
can be seen that

Ay =0. in Q.
vlre=0.  vln=Ci~Cs.

The definition of ¢(C,) and o(C>). which was indicated by (5.2.9), gives

—_—
9]
(6]
[
W]

N

, 1 b=
o(C) — 6(Ca) = ﬂ/r z.

The estimate of the right side of (5.2.12) is obtained by the following Lemma.

Lemma 5.2.2 Let u be the solution of the system

Dpu=0. in Q.
(5.2.13)
u{r0=0. ulr::I.
then we have
(5.2.14) 0 < up_y, <C". for n<j<m. where C"=1-h.
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Proaf. The left half of (5.2.14) comes directly from the maximum principle
of the discrete Laplacian operator 4A,. For the right half, the region Q can
be partitioned into four sub-regions: A\ABB,. A\ ADD,. D,DCC,. C,CBB,.
denoted by ;. Q,. Q3. Q4. respectively. as shown in Fig. 3.3.

[t can be seen that the function

"

r.in Q[ .

y. in Qg .
(5.2.13) =4

3—x.in 3.

$ 3 - y. in Q‘; .
satisfies
—%. on .4.41.BBl.CC1.DD1,
) Ahl.' =
(5.2.16) 0. otherwise.
v |r0=0. v lrl= 1.

Denote f = —Apjv. Obviously. f > 0. Then u can be decomposed into two parts:

u = v + w. where w is the solution of the following svstem

AhLL' = _f. in Q.
(5.2.17)
u |ro= 0. w |[‘1=0.

Since Apw = f > 0, and w vanishes on the boundary. the maximum principle of

Ay shows that w < 0 at all grid points. Then we have
(5.2.18) u<u. at all grid points.
and especially. un_1; < tp_1;, =1 —~h=C". Lemma 2.2 is proven.
Obviously, z: = (C, = ()i where u is given in Lemma 5.2.2. This results in

(5.2.19) [Cn_1,] < C*|C, = Cal. forn<j<m.
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Similar arguments can be used to Lv',‘m_;-[. Umnetg- l;,_,,_l. Proposition 4.2.1 is a
direct consequence of (5.2.19). along with (5.2.12).

By Proposition 5.2.1. there is an unique fixed point under the operator o.
i.,e.. o(C) = C. That’s exactly the solution of the syvstem (5.2.1), (5.2.7). Thus

the existence and uniqueness of the system is proven.

Remark 5.2.1 The above procedure can be applied to a set of very general
cases: general domain (either syvmmetric or non-svmmetric ones), the domain
with more “holes”. different boundary conditions for the vorticity. We can even

extend it to 4-th order scheme. as will be explained in Section 5.3.

Remark 5.2.2  The other choices for the vorticity boundary condition includes

Wilkes’ formula

1o, T . Lo, 7o
Uy — 52 — 580 _ '{L"‘x,n—[ - §ui,n—2 — 5lwn

(’3220) i = h2 - “1.n h2

which are analogous to (5.2.2). (5.2.3). The combination of (5.2.6) and (5.2.20)

gives the corresponding formula for C;

1 ,8 [ 1 fM g 1., (2
5.2.21 cz__/ ,'-__/ --—h-/ .4,'+—h."/ ne
(5 ) ! |F1|(T T ¢ 7Jr, - 3 r, 3 T d)

Again. the coupled system (5.2.1). (5.2.21) has to be solved to obtain ¢ and
the constant C, by iteration. The existence of the solution can be guaranteed by
introducing a similar contraction mapping o: for any constant C, denote v as

the solution of (5.2.8). and define

1 ,8 ) 1 4, b 1 (2)
5.2.22 5(C) = — (= P - _hI/ _h2/ %),
(5 ) o(C) lrl|(7/[:l 3 7/1:1 v ght o w3 . )

Proposition 2.1 is still valid here. the only difference is that C* = 1 — £h +
O(h?). It should be mentioned that C* is the convergence rate corresponding to
different vorticity boundaryv conditions. For example. 1 — A is the convergence

rate for Thom's formula. and 1 — 2k is the convergence rate for Wilkes™ formula.
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The detailed derivation of convergence rates comes from a simple 1-D model.
This convergence rate is consistent with the numerical experiments which will be
presented in Section 5.4.

5.2.1 Iteration Procedure: Fixed Point Iteration

Proposition 5.2.2 also provides a means for solving the system (3.2.1). (5.2.7)
by iteration procedure: once the k-th iteration for the constant Cgk) is obtained.
solve the stream function v*) using the boundary condition C{*. then update
the constant ka+l)b}' (A + 1)-th iteration: Ct“” = O'(ka)). Proposition 5.2.1
indicates that this iteration procedure converges to the real solution of (5.2.1).
(5.2.7).

[t should be pointed out that with the constant C\*) obtained at each iter-
ation stage. a linear system solver for (5.2.1) is required. The Schwarz iteration
is extremely efficient to solve this (discrete) Poisson equation in the overlapping
region. At each sub-domain. which is a rectangle with uniform grids, some fast
Poisson solvers, e.g. FFT. can be applied. The computational evidence indicates
that the combination of the Schwarz iteration and FFT solver gives an excellent
convergence speed in the overlapping region.

Our numerical experiment also shows that Schwarz iteration and the iter-
ation formula (5.2.9) can be combined into a single iteration to facilitate the
computation.

The momentum equation in (5.1.5a) can be discretized by the second order

finite difference method
(-).223) agw' + UD-IJJ + L'Byq.' = UA},.:} .

The velocity field u = (u.v) = (-9, . d;1’) can be updated via the finite differ-

ence of v

Il
Qi
b

-

(5.2.24) u=-Dyu. v
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5.2.2 Explicit Time Stepping Procedure

The above scheme can be implemented verv effectively through the explicit
treatment of (5.2.23). as discussed in detail in [ELV'1]. The convection and dif-
fusion term can be updated explicitly. which does not result in any problem
caused by the cell-Reyvnolds number constraint if the Runge-Kutta method is
applied. Such explicit treatment is especially effective in Poisson solver (5.2.1).
(5.2.7) when we apply the iteration formula (5.2.2), (5.2.3). For simplicity we
only present the forward Euler time-discretization. The extension to multi-step
or Runge-Kutta methods is straightforward.
Time-stepping: Given the vorticity «»” at time t". we compute all the profiles
at the time step t"¥! via the following steps.

Step 1. Update {w,";l} at interior points (r,.y,). using

w,nq'-l _ “U.n —
+u"D o™ + 0" Dy = vAR™.

At

(5.2.25)

Step 2. Solve for {L,”J‘l} at interior points (r,. y,). by the following coupled

svstem
Dpettt = onrl in Q.
(5.2.26)
e = 0. el | = O
and
1 1 2
s20mcprta (Mt e [P e Ly [0 ),

The iteration procedure described above is used to solve (5.2.26), (5.2.27).
Step 3. Obtain the boundary value for ."*! by Thom’s formula (5.2.2).
(5.2.3).
i

Step 4. Update the velocity u,"_;l .t using the second order difference

scheme at the interior points. and set u™*! |= 0

(-).2_28) u"-i-l — _Dyl,7n:.l i L'Yl‘l — DIL,H?I R
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5.3 The Fourth Order Method

A fourth order method. Essentially Compact Fourth Order Scheme (ECH4).
which was proposed by E and Liu in [ELV2|. can be used here. The starting
point of the scheme is the fact that Laplacian operator A can be approximated

with the fourth order by

. R P22
Ay + EDD?

(5.3.1) A :
I + EA"

+ O(hY).

Multiplying the denominator difference operator 1 + ';—;Ah by the momentum
equation gives

i h2 B Rz,
(5.3.2) (1+ 5810w + (1 + 5 80) (uV)w = v(on+ —G—D;Dj)w.

Multiplying the same operator by the kinematic equation results in

h? h?

(333) (Ah + E‘DiDj) v =(1+ EAh)(JJ .
with the boundary condition
(5.3.4) Uir,=0. vir,=04.

Similar to the system (5.2.1) in the second order case. the constant C; is not
known vet. which has to be obtained by the boundary condition in (5.1.5d).
The implementation of the boundary condition fi, ;L.;“.," = 0 is a little differ-
ent from the second order case. As can be seen later. the vorticity in the interior
points has to be determined by a Poisson-iike equation and the boundary condi-
tion for w. which, in turn. depends on the stream function and C;, by Briley's
formula. which will be presented later. To avoid the coupling between the two
svstems. we express % in terms of a third order derivative of ¥, so that only

(5.3.3). (5.3.4) needs to be concentrated. which can facilitate a lot of computa-

tions as shown in our numerical experiments. As can be seen. on the boundary
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section AD of [}, w = Av = 8;’L'. which is implied by the fact that v = C; on
the boundary AD. Accordingly. 5—;1 = —Ogv on AD. On the other hand. &};‘ can
be approximated by

1
(335) agL"t.n ~ f_lg(]-s‘-'x.n—l — 6Ly T Uin-3 — 1wa,n) -

The third order derivative of ¢* at other boundary sections of I'; can be obtained
o - . . . . . ., - ﬂ . . ‘. .
similarly. Plugging into the boundary condition [ 25 = 0. we arrive at an

equality similar to (5.2.6)

(5.3.6 (0) 3 /(1) 3 /(2) 1 3)
D). = - - — S 0.
> ) /rl ¢ 2Jr, - 3 Jr, © 10 Jr, bt

Since v is a constant C, on ['|. we have

3 (1) 3 (2) 1 3
= L= = U+ 3
2T, | Jr, 5] Jr, 10(T,| Jr,

(5.3.7) Ci

Again. the formula (5.3.7) plays the role of a bridge between the constant C,
and the boundary condition [ gﬁ = 0: Different C; leads to different v; ;. which.
in turn. results in different [ g—ﬁ while (5.1.5d) indicates that this integration
has to be 0.

The coupled system (5.3.3). (5.3.4). (5.3.7) is used to obtain ¥ and the

constant C by iteration. The similar argument can be applied here that the

number of both equations and unknowns is .V, + 1.

Of course, the right hand side of (5.3.7) depends on C;. A similar procedure
of iteration can be applied. First, we define the operator o: for any constant C.

let ¢ be the solution satisfving

h? . h?
Ny + —DiD;Z w = (1 + —Ah)w'
(3.3.8) ( 6 j) 12

v !ro_ . v }rx_

and o(C) is defined by

I

3 D 3 (2 1 (3)
A

(5.3.9) o(C) = 51T &
- &

- = L +___.
. 5[0 Iry 10|y} Jr,
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The following proposition shows that ¢ is a contraction mapping. Its argu-
ment is similar to that of proposition 5.2.1 in the second order case and the proof

of it will be provided in Section 5.5.
Proposition 5.3.1 For any two constants Cy. C,. we have

(5310) IO(C[)'—O(C.)” SC. C[ —Cgl. where C'=1—O(h)

By Proposition 53.3.1. there is a fixed point for the operator o, i.e.. o(C) = C.
which is exactly the solution of the system (5.3.3). (5.3.4), (5.3.7). Thus the
existence and uniqueness of the svstem is proven.

5.3.1 Iteration Procedure: Fixed Point Iteration

A similar method for solving the system (5.3.3). (5.3.4). (5.3.7) can be ob-
tained by the iteration procedure: once the k-th iteration for the constant C'}k’
is obtained. solve the stream function ¥ using the boundary condition C'fk) in
(5.3.8). then update the constant ka*” by (A +1)-th iteration: C{kﬂ) = o(C%k)).
This iteration procedure converges to the real solution of (5.3.3), (5.3.4). (3.3.7).
as was guaranteed by Proposition 5.3.1.

Again, it should be pointed out that with the constant ka) obtained at each
iteration stage, the Schwarz iteration combined with FFT is needed to solve the
discrete Poisson-like equation in the overlapping region. In addition, Schwarz
iteration and the iteration formula can be combined into a single iteration to

facilitate the computation.

Let’s go back to the momentum equation. As in [ELV2], the corresponding
nonlinear convection term in the vorticity dvnamic equation can be estimated as

h2 _ h? ~ h?
(1 + —_;Ah)(qu‘) — D:(l + l—D;)(llw') + Dy(l + —Dg)(l,w)
(5.3.11) - ° °

— ?—;Ah(uﬁr.‘; -+ l'Dyw') + O(h’4) :
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The first and the second terms in (5.3.11) are compact. The third term is not
compact. vet it does not cause any problem in practical computations since
uDou™ + U"Ey;u" can be taken as 0 on the boundary. The case of bound-
ary condition with slip can be treated similarly. as discussed in [ELV2]. Finally.
by the introduction of an intermediate variable =&

= a1 — , h?
(’)312) w = (1 -+ ‘1—2'Ah)..o -

and combining the discussions in (5.3.2). (5.3.11). (5.3.12). the whole momentum

equation can be approximated by

B.(1+ " T
] 8@ + D (1 + % D3) (us) + D, (1 + =D2) (vu)
(5.3.13) B2 ’ B o "
_EAh(UD;u} -+ L'Dy.,‘,') = I/(Ah + TG—D.?'.D;)“J )

The velocity field u = Ve = (—9yu.0rr) can be obtained by the long-
stencil approximation to d;. 9,

- . — h* —~ h?
(5.3.14) u=-D,(1 - EDy)U .ov=Dg(1- EDI)U.

The vorticity is determined by T via (5.3.12). The implementation of
(5.3.12) needs the boundary condition for w. As already discussed in [ELV2].
the main point of the vorticity boundary condition is to use the no-slip boundary

-

condition gﬁ = 0. and convert it into w |gn by the kinematic relation Ay = w.

We can use Briley's formula

oy — 1
0T 18hA2

(35.3.135) (108w, — 27wy 0 + dey 3 — 83w, 0) .

along with the one-sided Tayvlor expansions of the stream function

1 10 o
(3.3.16) iy = 6Ly — 2 + mtug — mung —dh [ =] .
3 3 % /.o
_ 8 80 Y
(5.3.17) Ui = 40U, — 13uus + —thg — —tno — 12h [ =] .
3 3 9y /.o
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On the boundary section AD. Briley’s formula gives

(3318) (lOSL't.n—l - 27U1.n~2 + ‘11»'"1.71-3 - 85&171) .

“in = 18R
[t should be mentioned that the svstem (5.3.12) and the boundary condition

(5.3.135). (5.3.18) can be solved very efficiently by the combination of the Schwarz

iteration and FFT solver.

5.3.2 Time Stepping Procedure
Similar to the second order case. all terms in the momentum equation can be
updated explicitly. Again, we only present the forward Euler time-discretization.

The extension to multi-step or Runge-Kutta methods is straightforward.

Initialization: Given {w}. compute

(5.3.19) (1+ ?—;A,,).,,-O =z

Time-stepping:

Step 1. Update {I{‘J’l} at interior points (r,.y,) using

- T+DI(1—1-—6-Dy)(u o )+Dy(l-r-€-DI)(u"w )
(5.3.20) p2 B2
— T3 8n(u" De” + " Do) = v(Dn + ED'f__Dg)w“.

Step 2. Solve for {u,”l‘l} at interior points (r,.y,) using

(2w + h—zDipg)L-"*‘ ="

(5.3.21) 6
L,'_n-—l iro: 0 L,‘"“'I h‘[: C:l—l .
and
3 (1) 3 (2) 1 (3) ,
(-) 3.)..2) Cﬂ+l = —_— L'n"‘l - — Lv"‘*l -+ / wn-t-l .
1 2[4 | Jr, 5|04 Jry 10|y | Jry
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The iteration procedure described above is used to solve the system (5.3.21).
(5.3.22).

U at the ~ghost points™ using (5.3.16). (5.3.17).

Compute "+

Step 3. Obtain the boundary value for ."~! by Briley’s formula (5.3.15).
(5.3.18).

Step 4. With the boundary values for »*"! updated in Step 3 at hand. we

solve for {w[‘J’l} at interior points using
h?.
(53-23) (l + BA,‘)JH?[ — :n—[«[ )

The combination of Schwarz iteration and FFT is applied. Only Sine transfor-

mations are needed.

Step 5. Update the velocity u'7" . v';! using the 4-th order difference scheme

N - h2
(5.3.24) u"*'=-D,1 - %Dg)u"" . Th = D1 - F DY

5.4 Numerical Experiment

Two numerical examples will be presented to show the validity of the meth-
ods proposed above. The first example is a flow with a force term. The accuracy
of both the second order and fourth order method is documented. The second
example is a flow passing through an engine. e.g. a cooling system. Detailed
structures of vorticity at different time steps will be given.

5.4.1 Accuracy Check
A Taylor vortex type flow in a multi-connected domain is computed by the

methods proposed earlier. The exact stream function is chosen as

(5.4.1) Ye(x. t) = (cosr + cosy + cosrcosy)cost .
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Accordingly. the exact velocity and vorticity are determined by

ue(x.t) = -9, = (siny + cosrsiny)cost .
(5.4.2) ve(x.t) = 8,v. = (—sinr — sinrcosy)cost .
Le(x, t) = Av, = (—cosr — cosy — 2cosrcosy)cost .
The kinematic viscosity is taken as v = 0.001. Substitution of (5.4.2) into the

momentum equation gives
(5.4.3) Orwe + (e Ve, = vAw, + f.

where f is the force term. The domain has the same shape as in Fig. 0.3. Yet
the dimensions of the boxes A,B,C,D, and ABCD are [-3w.37]* and [—7. 7]>.
respectively. Using the same notations as before. denote the outer boundary
A B\C D, as [y, and the inner boundary ABCD as I';. It is obvious that the

boundary condition for the stream function at the outer boundary is
(5.4.4) v(x.t) |p,= —cost .

which is a constant varying with time ¢. The stream function is also a constant on
[';. (at cach fixed time). denoted by C;. Yet. C; is not given explicitly. We need
to obtain such constant by the procedure described in Section 4.2 and Section
4.3 to determine it.
5.4.1.1 Second Order Scheme

(5.4.3) can be solved via our second order method coupled with the 4-th
order Runge-Kutta time discretization. as discussed in (3.2.23)-(5.2.28). Thom’s
formula (5.2.2). (3.2.3) are chosen as our boundary condition for vorticity. The
results using Wilkes’ formula are similar. The force term f is added when (5.4.3)
is updated. The final time is taken to be t = 6.0. The CFL number, which is
defined as Z}—; is taken to be 0.3. The absolute errors of stream function and

vorticity are listed in Table 5.1. As can be scen. the stream function achieves
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almost exactly second order accuracy. while the vorticity achieves second order
accuracy in L', L? norms, and obviously loses accuracy in L> norm. The reason
for it is still under investigation. All the errors are measured in L'. L? and L™

norms. where the LP norm is defined as

1 1
(5.4.5) Wfller = (ﬁ/nf”d:v)" . for 0<p<oc.

where [Q] is taken to be 3272 in this case.

5.4.1.2 Fourth Order Scheme

The fourth order method coupled with the 4-th order Runge-Kutta time
discretization, as discussed in (5.3.19)-(5.3.24). can also be used to compute the
flow. The force term which will be added to the vorticity equation (5.4.3) becomes
(L=+ %Ah)f. since we applied the operator 1 + ';—;Ah to the momentum equation.
The final time is still taken to be t = 6.0 and the CFL number is taken to be
0.5. The absolute errors of stream function. vorticity are listed in Table 5.2. It is
indicated in the table that the stream function achieves more than fourth order
accuracy in L'. L? and L* norms. The vorticity achieves fourth order accuracy
in L'. L* norms and more than third order accuracy in L= norm.

5.4.2 A Flow Past a Cooling System
An impulsively-started incompressible flow in the following region (see Fig.

5.4) was computed using the fourth order method we proposed.

The flow region is similar to a cooling engine. The detailed dimensions of it
are given bv: 00O, =0T =1, OR=0O\R, = é. The inlet points B and M have
coordinates (w.r.t. the origin O) (0. 3). (0. g). respectively. The coordinates of

other corner points are

). C(-g’-.l). 0—3—2). E('—..'—). F(—.=).

(5.4.6) A(0. 16 1 T

1
8
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The positions of the outlet points are also determined by their coordinates

3 301 1
(5.4.7) P(35-0). Q(i.—3). RO.-3).

[n addition. there are three boxes in the middle. which are denoted by S,S,0U,U.

535,005, and S5S¢UsUs. The r—coordinates of Sy. S,, S3. S;. S5. S¢ are given

13 15 17 19 21 . - , e .3 3
33+ 35+ 33 33+ 33 and the y—coordinates of L'} and S, are given by 3 1

1
32"

—

by

tv

respectively. The coordinates of 4,-7T, can be obtained by symmetry.

The no-penetration, no-slip boundary condition u |r= 0 is imposed at the
boundaries of the region, except for the inlet BM/. B, M, and outlet QR. Q,R,.
At the inlet B . the velocity field is given by the standard parabola profile

3 1

and consequently. the velocity profile at the inlet B,/ is

(5.4.9) w= 3845 ~ )y~ 7)-

(,
Ii
o

By the relationship between velocity and stream function that u = V7.

we can integrate our velocity field at the inlet and set our boundaryv condition

for ¢ as:

(5.4.10) On BM vy = —1.5( —l) + 128(y —i)3+i
). 4. d . Lb —_ .2 y 4 Tl I 16 3.2 *
and

) _ 1 53 3
(5.4.11) On B[.“r[l. Uy = I.D(y—I)— 128(!/_1'6)3_3_2"

Then the other boundary values for ¢ is given by

On RA.AF.FE.ED.DC.CB.BA. v, =3.

On RiA,.\MWVF.RE,.E\D,.D\C,.C\B,.BA,. wvp=—
On MT . TT, , T)M,, v, =0.

On QP ,PP,.PQ,. vy, =0.

QO |—
»
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At the outlet RQ and R,(Q,. we adopt the natural normal boundary condi-
tion

; v Jdu Ow

The boundary value for v on the middle box 'y = 535,U ;{3 can be obtained

by symmetry
(34.14) Uy =0. On ['~_>.

Yet. the boundary condition for ¢ at the other two cooling boxes: ['} = 5,5,05U;.
'y = 5556065 can not be obtained directly. The fixed point iteration process
described earlier has to be carried out to get such constants.

The fourth order method proposed in Section 5.3 was used to compute the
flow. with Reynolds number Re = 2000. The calculations were carried out by
two grid sizes: Ar = Ay = 5—{5 and Ar = Ay = ﬁ. (which corresponds to two
resolutions: 512 x 376, 768 x 864. respectivelv). The vorticity profiles computed
bv the grid Ar = Ay = %5 at a sequence of times. i.e. t; =0.5. to =1, t3 = 1.5.
t. = 2 are shown in Fig. 5.5-3.8. respectively. Fig. 5.9 shows the vorticity profile

at = 6. which is close to a steady state.
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5.5 Proof of Proposition 5.3.1

Proof. Using the similar notations as in Section 5.2: denote v = ¢! — 2, where
v'!. ¢? are the solutions of the (5.3.8) with the boundary condition ¢! |r,= C).

v [, = C?. respectively. It can be seen that

h% ., o\~
Ap+ —DD; ) =
(5.5.2) ( 6 9
& lro’: 0. L |r1 Cl C’Z -

The definition of ¢ in (5.3.9) indicates that

- | L3 - 3 /@ 1 (@
(5.5.3) o(Cy) — o(C,) = lrll( / v 5/[: L+10 r b).

1

As can be seen, the right side of (5.5.3) is different from (5.2.12) in the second

order case: three integrals. fm f(z) (3) v are involved in (5.3.3), where

only ( ) was involved in (5.2.12). The better control of (5.5.3) is obtained by

rewriting it. Motivated by the idea of the stability analysis of vorticity boundary

ol

conditions. which were shown in [ELV2]. we can rewrite 3v,_ 1, — 3Un_0; +

I ae
EL n—-3. as

3 - 3 - -
o §wn—l.j - gwn—z., + ﬂ)'wn—-ii._)
(.)..),-l) 2 - 3 )
LnJ+DL/n l.]— hDLn l.} - IB}IDLn_)J

The substitution of (5.5.4) into (5.5.3). along with the fact that ¥ is a constant
C, - Cyon Iy, gives
(5.5.5)

1
(’)(C'l)—(D(C'Q) |F I

where D%, ¢ is D2w on the boundary sections AB. CD. and D}« on the boundary

((Cl Sl |+ c—Zh® [ DHC+—h? | DR

SO St N 1,,(3)2,)
r, 3 r 10 r /

sections BC, DA.
The following Lemma, which is analogous to Lemma 5.2.2 in the second

order case. gives the estimate of ¢ near the boundary ;. The strategy of the
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the operators (Ah + %DﬁDz).

Lemma 5.5.1 Let u be the solution of the system
hz

Ap + —=D2D?)u =0.
(5.5.6) ( 6 )
ulr,=0. ulr,=1.
then we have
(5.2.7) 0< upi; <1 —-kh. for n<j;j<m.
Proof. Using the same notations as in the proof of Lemma 5.2.2, the region

2 can be partitioned into four regions: 4,ABB,. 4,ADD,. D,DCC,, C,CBB,,
denoted by 2. 2, €23, €4, respectively. as shown in Fig. 5.3. The same function
¢ as in (5.2.13) is considered. Detailed calculations indicate that the constructed

function ¢ in (5.2.13) is concave, which satisfies

h® .,
(Aw+—=DiD})v <0.
(5.5.8) 6
Ulro=—‘0. L‘lrx=1.
Then of course. f = —(Ah + 'g—zDiDg)v > 0. Then u can be decomposed into

two parts: u = ¢ + w. where w is the solution of the following svstem

Dr+ED2DNw=f>0,
(5.5.9) ( = D2D;)
w =0, wr,=0.
[t can be argued similarly as in Section 5.2 that the maximum principle

holds for the operator (Ah + %:’-Dng). In the uniform grid. the operator has the

form
h? 2 2 1
(Ah + ?Dsz)ui'j = 6?((”1_[.]—[ + 411,44 -+ U,‘[J_l)
(5.5.10) +(du, -y — 20u,, + du,aq )

+(u1—l.j~l + 4“1.}01 + Uz-r-l.J-Ll)) .
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which indicates the maximum principle. This principle together with (5.35.9)

shows that w < 0 at all grid points. Then we have

(5.5.11) u<v. at all grid points.

and especially. up_g;j < tp_x; = 1 — kh. The left half of (5.5.7) comes directly
from the maximum principle of the operator (Ah + —é— D? 3) Lemma 5.5.1 is
proven.

Obviously. & = (C; —C,)u, where v was given in (5.5.1) and u is the solution
of (5.5.6). which results in the control of the second term in (5.5.3):

(5.5.12) 9

-

1)

v'< (1 = h)|Cy = ClIT4].

The estimates of the last two terms in (5.5.5) are obtained by the following
Lemma.
Lemma 5.5.2 Let u be the solution of (5.5.6). then we have

(1)

r

o 9 - (2) 9
(5.5.13) | [ Dhul. 12| [7 Dhul < an.
Iy

Proof. For simplicity of the presentation. only the integral on the boundary
section A B is discussed here. The boundary sections BC. CD. DA can be dealt
with in the same way. The equation in (5.5.6) gives D2u = —(Dg + %’D;’:Dz)u
whose application to the grid point (n — 1. j) results in
(5.5.14)

h2

. 2 1 2 1
Diun-i, = =(Dj + DD} )un-r, = -

2 2 2.
"Dyun_;)_), - §'Dyun~.].) - -Dyuﬂ._] -

6 6

[ntegration of (5.5.14) along the boundary AB (by trapezoid rule) gives

(5.5.15)
2 2 L., lup_9m+1 — Un-2m-1 lLup_2ne1t — Un_an-1
h DIU,, -1y = —gh ;)- h - ')' ; )
AR Z Z ]
_th(_l_un—l,m--l — Up—-1n-1 _ lun—l.n#l - Un—l.n—l)
3 \2 h 2 h
_lhg(lun,m¢l — Unpm-1 _ lun.n+l - un.n—l)
6 \2 h 2 h ’
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As argued earlier. the application of the maximum principle in (5.5.6) shows that
(5.5.16) 0<uy,;<1. for (x,.y,) € Q.
The combination of (5.5.13) and (3.5.16) gives

Diun_w S h.

AB

(3.5.17) h?

Similar estimates can be applied to boundary sections BC. CD. DA. Lemma
A.2.2 is proven.
As said earlier. ¢ = (Cy — C3)u. The combination of (5.5.3), Lemma A.l.

Lemma A.2. gives

. , 3 2 1

(5.5.18) IO(Cl) - O(Cg)[ < (1 - :'h, + —h)lC[ - Cg[ = (1 — —h)[Cl - Cgl .
9 19y 10

since ||| = 4. Proposition 5.3.1 is proven.
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Table 5.1: Errors and orders of accuracy at t = 6 when the second order method.
which was described in Section 5.2. is used. CFL=3. where CFL= ég—f;.

I 1 N || L= error | L™ order || L' error | L' order || L* error | L* order |

18 || 5.170.02 1.57e-02 3.086-02
72 2.20e-02 2.10 6.35e-03 2.23 8.68e-03 2.16
il 96 1.26e-02 1.94 3.58e-03 1.99 1.95e-03 1.95
144 1} 5.49e-03 2.05 1.54e-03 2.08 2.14e-03 2.06
192 | 3.11e-03 1.98 8.64e-04 2.01 1.20e-03 2.01
18 || 1.02e-01 1.986.02 3.836.02
73 1 6.72e:02 | 1.03 | 8.50e-03 | 2.08 | 1.27e-02| 1.98
< I 96 3.03e-02 1.01 4.88e-03 1.93 7.53e-03 1.82
144 || 2.98e-02 1.29 2.14e-03 2.03 3.38e-03 1.98
192 || 1.98e-02 1.42 1.23e-03 1.93 1.96e-03 1.90

Table 5.2: Errors and orders of accuracy at ¢t = 6 when the fourth order method.
which was described in Section 5.3, is used. CFL=%. where CFL= Z\A'f.-"
| I N I L= error | L* order ]| L' error [ LT order || LZ error | L? order |

1S || 1.08¢-03 1.31e-03 1.680-03
72 || 6.24e-04 4.63 1.90e-04 1.76 2.40e-04 1.79
ol 96 1.72e-04 1.48 5.08e-05 4.58 6.41e-05 14.59
144 || 2.70e-05 4.57 7.76e-06 4.63 9.74e-06 4.65
192 || 7.59e-06 4.41 2.18e-06 4.41 2.74e-06 1.41
48 || 2.23e-02 2.81e-03 3.93e-03
72 i 5.70e-03 3.36 5.01e-04 4.25 7.52¢-04 1.08
< || 96 I 2.22¢-03 3.28 1.57e-04 1.03 2.49e-04 3.85
144 | 5.12e-04 3.62 2.92e-05 4.15 4.82e-05 4.05
192 | 2.02¢-04 3.23 9.24e-06 1.00 1.539e-05 3.86
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Figure 5.2: An example of multi-connected Domain
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Figure 5.3: A decomposition of the domain
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Figure 5.4: A cooling system
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3,

Inlet

Outlet Outlet

Figure 5.5: Vorticity plot with 30 equally spaced contours from 1 to 100 and from
-100 to -1. at time ¢; = 0.5, of the flow past the cooling system. Re = 2000. The
computation is based on EC4 method with the resolution Az = Ay = 2

312°
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inlet Inlet

Figure 5.6: Vorticity plot with 30 equally spaced contours from 1 to 100 and from

-100 to -1. at time ¢, = 1. of the flow past the cooling system. Re = 2000. The
computation is based on EC4 method with the resolution Ar = Ay = L.

512
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Figure 5.7: Vorticity plot with 30 equally spaced contours from 1 to 100 and from

-100 to -1. at time t3 = 1.3, of the flow past the cooling systemn. Re = 2000. The
computation is based on EC4 method with the resolution Ar = Ay = 2

312"
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Figure 5.8: Vorticity plot with 30 equally spaced contours from 1 to 100 and from
-100 to -1. at time ty = 2, of the flow past the cooling system. Re = 2000. The
computation is based on EC4 method with the resolution Ar = Ay = 2

512°
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Figure 5.9: Vorticity plot with 30 equally spaced contours from 1 to 100 and from
-100 to -1. at time t = 6, which is close to the steady state. of the flow past the

cooling system. Re = 2000. The computation is based on EC4 method with the

resolution Ar = Ay = L.
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CHAPTER 6

APPLICATION TO BOUSSINESQ
EQUATIONS

6.1 Preliminary

The 2-D dimensionless incompressible Navier-Stokes equations in the Boussi-

nesq approximation are given by

1
( 0,0 + (u-V)8 = Re~PrA6°
0 1
(6.1.1) . 8¢u+(u~V)u+Vp=Ri-9-( )+——Au.
1 Re
{ V-u=0,

where u is the velocity, p is the pressure. 8 is the temperature. Re is the Revnolds
number of the flow, Pr represents the Prandtl number. which is the ratio of
the kinematic viscosity to the heat conductivity. R:. the Richardson number,
corresponds to the gravity force effect and the thermal expansion of the fluid.
Sometimes there are different dimensionless quantities in the above equations
based on the scales relating to the purposes of different setups in physics. Some
other parameters can be introduced in different problems in physics, such as the

Rayleigh number Ra = Ri- Re*- Pr appearing in the Rayvleigh-B’enard problem,

and Gr. the Grashof number, which is defined as Gr = % = Ri-Re®. For brevity
of our presentation below, we denote v = 7{‘;, and x = 72—;‘—,,7. The system (6.1.1)

is usually identified as Oberbeck-Boussinesq equations. (or. simply, Boussinesq
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equations).

(6.1.1) can also be written in the vorticitv-stream function formulation

(9,0 + (u-V)8 = KA.
a(w' -+ (U'V)w' = Rlazg +vAs.
AU" = 4.

u=—0,u. v =g

\

where » = V x u is the vorticity. ¢' is the stream function.
The natural no-slip boundary condition u [r= 0 is imposed in (6.1.1). which
in turn can be written in terms of the stream function v if the computational

domain is a simply-connected domain

e
6.1.3 =0, — =0.
( ) ¢ dn

For the temperature 6. we can either impose the Dirichlet boundary condi-

tion
(6.1.-1) 0 r=6,.

where 8, is a given distribution for the temperature on the boundary: or. we can

impose the Neumann boundary condition

20

6.1.5 — =05. .
(6.1.5) E I onl

where 6y is a given heat flux on the boundary. If the adiabatic boundary condition
is assumed. §; can be taken to be 0.

The strategy of developing the fourth order numerical method of the Boussi-
nesq equations in vorticity formulation is similar to that of the Navier-Stokes
equations. See [ELV1], [ELV2]. A 4-th order essentially compact approach will
be used to treat the momentum equat:cn. The purpose of this approach is to

reduce the number of numerical boundary conditions for «. This is important
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for the momentum equation since ¢ is coupled with ~ by a Poisson equation.
The main issue of determining the vorticity on the boundary is that there are
two boundary conditions for stream function as in (6.1.3). The no-penetration
boundary condition ¢ [r= 0 can be directly applied in the Poisson solver. The no-
slip boundary condition 5%— ir= 0. along with the kinematic relationship between
¢ and «. will be converted into a vorticity boundary condition, such as Briley’s
formula or a new 4-th order vorticity boundary formula proposed in Chapter 4.
Moreover. the main difference between the momentum equation in Boussinesq
equations and the usual fluid equations is the addition of the gravity term, i.e.
the temperature is coupled in the momentum equation with the gravity term.
This coupling will be treated explicitlv. Consequently. no numerical difficulty
will be anticipated.

The evolution of temperature in the temperature equation can be treated as
a standard convection-diffusion equation. mainly a passive scalar. This equation
can be updated very efficiently by the 4-th order long stencil difference operators.
The numerical values at the "ghost” computation points near the boundary can
be estimated by one-sided extrapolation. To reduce the number of interior points
for both computational convenience and better stability. we can also apply some
information obtained by the temperature equation on the boundary. Similar idea
can be found in [HKR]. The resulting boundary condition can be proven to be
stable. both numerically and theoretically.

The 4-th order Runge-Kutta method will be used in our time discretization
to avoid cell-Reynolds constraint. as discussed by E and Liu in {[ELV1], [ELV2].
The numerical scheme, including the implementation of the time-stepping proce-
dure. is described in Section 6.2.

In Section 6.3. a well-recognized model dealing with Ravleigh-Bénard con-

vection is used to check the accuracy of our numerical scheme. The stream
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function and the temperature in the two-dimensional flow can be represented by
three parameters with the help of single and double mode analyses. By making
appropriate transformations. the evolution of the three parameters can be de-
scribed as a nonlinear system of ODEs. which is known as the Lorenz syvstem.
An accuracy check is carried out for our computational method applied to the
Boussinesq equations (with a single source term) based on the Lorenz system.
Full fourth order accuracy was shown for this flow.

In Section 6.4, we demonstrate the robustness of our numerical method by
simulating an example of strong shear flow induced by a temperature jump. of
the ratio 1.5:1. in an insulated box. The complicated structure of rolling up,
resulting from the vortex sheet and the consequent Kelvin-Helmholtz instability.
is completely resolved. The accuracy of our computation is checked by the perfect

match of the two resolutions: 2048 x 256 and 4096 x 512.

6.2 Description of the Scheme

For simplicity of presentation. we take the same computation domain as in
Chapter 3: Q© = [0,1] x [0, 1] with grid size Ar = Ay = h. The boundary is
composed of I';: {y = 0,1} and 'y: {z = 0.1}. The associated numerical grids
will be denoted by {z; =i/N,y, =j/N. 1. =0.1.--- . N}.

6.2.1 Temperature Transport Equation
For the temperature transport equation 9,0 + ©-V8 = xAf. one can approx-

imate d;. d, by the standard fourth order long-stencil operator

- h2 ~ h®
(6.2.1) 9 = D(1 — EDg’) + O(h'). J, = D,(1 — —D?

where D,. D? are standard centered difference operators corresponding to 8, 82.
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respectivelv. To approximate A in the diffusion term. one can see that

h2
(6.2.2) A:A,,—I—O-(D';+D;)+0(h*).

Thus we have the approximation for the temperature equation

. ~ R? ~ R, h? _
(6:23) 98+ uD:(1 = =D3)0 +vDy(1 - =D))f = ~(Dn - 5 (Di+ D;))6.

6.2.2 Temperature at Ghost Point(s)
As can be seen, the implementation of (6.2.3) requires the determination of
@ at the "ghost points™, which are grid points outside the computational domain.
[ts derivation needs the one-sided approximation near the boundary. Shorter one-
sided stencils usually result in better stability and computational convenience.

For brevity of the presentation, we concentrate on the boundarv [';, j = 0.

6.2.2.1 Dirichlet boundary condition for Temperature
[f the Dirichlet boundary condition for the temperature (6.1.4) is imposed,
0,0 can be given accurately on the boundary to be ,(r,.0). Accordingly, under
this boundary condition for the temperature. (6.2.3) shall be updated at interior
points (r,.y,). 1 <, j < N —1. This indicates that only one “ghost point” value

0, 1 needs to be obtained. Local Taylor expansion near the boundary gives us

2 4 12 <
00i0 - E9:‘ 1— 7500+ ig:.x + 1/12350,,0 + O(h°).

2.4 == =
(6.2.4) 01 11 1t 1T 1

Sometimes we can even use information from the PDE., or derivatives of PDE,
near the boundary to reduce the number of required points in the stencil. As can
be seen. the term 376 on j = 0 in (6.2.4) can be evaluated with the help of the

following evaluation on the boundary

(6.2.5) 90 |r,= kOO |r,= k(8% + 30 |r, = (D260, + 326 |r,) .
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where in the first step we used the no-slip boundary condition for u and v. which
implies that the convection term disappears on the boundary for the equation in

(6.1.2). (6.2.5) leads to
‘2 l 2
(6.2.6) 8;9 lr:= —039[, - d;(),,
K

where the right hand side is a known function since 4 is given on the boundary.

Substituting (6.2.6) into (6.2.4), we have

20 6 4 1 12
—0ig— —0;; — —6,, + —0,
1170 — 17%¢ 2+ 3+

. 1 ” -
2.7) 6, _, = o2l _ R 5y
(6.2.7) 8, _, T 1 11h (Eato,, a:6,) + O(R7)

The same applies to the other three boundaries. It can be shown that this formula

gives full 4-th order accuracy. See the results in Table 6.1.

Remark 6.2.1 In (6.2.4), we used 5-th order one-sided approximation for the
temperature near the boundaryv. In fact. the 4-th order Tavlor expansion near
the boundary can also be used, which results in only one interior point in the

formula

o

(6.2.8) Oi—1 = 20;0 — 0:y + h*3}0,0 + O(h') .

The derivation of 326, on 'z, (6.2.5) and (6.2.6). is still valid here. The combi-

nation of (6.2.8) and (6.2.6) results in
L1 X
(6.2.9) 0,"_1 = 20@0 - gi,l + h'(;@,Ob - 8;0,,) + O(hx) .

which is a O(h*) formula analogous to (6.2.7). Our computation shows that both
(6.2.7) and (6.2.9) provides stability and full accuracy. as explained in Section
6.3. Since (6.2.9) only requires one interior point. we suggest using (6.2.9) in

practical computation for convenience.
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6.2.2.2 Neumann Boundary Condition for the Temperature

Under Neumann boundary condition. the temperature distribution on the
boundary is not known explicitly. [n this case. (6.2.3) is updated at every com-
putational point (z;.y;). 0 < i.j < .N. This in turn requires that we determine
two “ghost point” values 8; _; and 6, _» to carry out (6.2.3). The same strat-
egy of one-sided approximations is applied. It can be seen that the local Taylor

expansion near the boundaryv gives

h3 .
(6.2.10) 0;_1 = 6;1 — 2h8,0,0 — ?839,.0 +O(h%).
and

8h3 3 3
(6211) 0,-._2 = 9,'.2 - 4}10!,91.0 - Ta;/ez.ﬁ + O(h ) -

The term 9,6, o appearing in (6.2.10). (6.2.11) has already been given by 6;. In
the no-flux case. this term disappears. Then the remaining task is to determine
0;';6,,0. As discussed above, the information from the PDE. or derivatives of PDE,
near the boundary can be used for the derivation of “ghost point™ values of the
temperature. If the normal derivative on the boundary. which is 8, on I';, is

taken for the original temperature transport equation. we arrive at
(6.2.12) By + uyfz + ubzy + v,0, + 10y, = K(0yz: + 350) . onl,.

All the terms in (6.2.12) are evaluated on the boundary [,. The first term
on the left side of (6.2.12) is a known function 8. which in the no-flux case
disappears: the third and fifth terms on the left side of (6.2.12) disappear because
of no-slip boundary condition; the fourth term on the left side also disappears
because of the no-slip boundary condition and the incompressibility which implies
that v, = —u, = 0 on T[,; the first term on the right side of (6.2.12) is also a

known function 6;... which disappears in the case that no heat flux is on the
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boundary. Then the remaining task is to determine the second term on the left
side of (6.2.12), uyf;. As can be seen. u, is in fact —~ on the boundary I,
because w = —uy, + v; and v, vanishes on the boundary. Moreover. since (6.2.3)
is updated at all grid points. including the boundary points. 8, on 'y can be
calculated by the standard fourth order long-stencil operator (6.2.1). Combining

all the arguments above and substituting back into (6.2.12). we obtain 639 onl,

o 1 —~ h*
(6.2.13) 830:0 = ;(9;’: —wioD:(1 - gD;)ez,o) —Ofrz -

Plugging (6.2.13) back into (6.2.10). (6.2.11), we get the two "ghost point” values
for 6 near the boundary [,

h 1 1 — h%
(6.2.14) 0i.— = 6;) — 2h8; — ?( Opc — ;w‘z.oD:(l - ED;)ei.O - 6’fx:)-

K

o s 8h3 1 - R
(62-1")) 9:.—2 = 01’,2 - 4h0f - -3—(;911 - ;w’:.oDz(l - FDI)OLO - 0[1:1:) -

In the no-flux case (in other words. 8; disappears). the above formulas can be

simplified to

/23 w0 = h2 >
(6.2.16) 6i—1 =61 +———D;(1 - =—D;)0,0.
3 « 4]
3, 2
(6.2.17) Oi.o = 0i2 + §‘h—:ﬁDz(1 - h—D;)Bx.o .
3 K 6

Still. the other three boundaries can be treated in a similar manner.

6.2.3 Momentum Equation
To solve the fluid part equations. we can use the Essentially Compact Fourth
Order Scheme (ECH). which was proposed by E and Liu. The starting point of
the scheme is the fact that Laplacian operator A can be approximated with the
fourth order by
O+ EDID?

5 + O(hY).

(6.2.18) A
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Multiplving the denominator difference operator 1 + %Ah to the momentum

equation gives

(6.2.19)
h? h? R h?
(14 55800 + (1 + 5 8R) V- (uw) = Ri(1 + 5 04)0:6 = v(on+ EDi.og)‘.‘;.

and multiplying the same operator to the kinematic equation leads to
h2 hz
5 - 2192) . — (] o .
(6.2.20) (Bn+ T DID})w = (1+ 500w
As in [ELV2]. the corresponding nonlinear convection term in the vorticity dy-

namic equation can be estimated as

o 2 2

(1+ %Ah)(u-\?w) = D.(1+ %—Dg)(uw) +D,(1+ %—D;-__')(w)

h? ~ — 4
EAh(thw + vDyw) + O(RY).

The first and the second terms in (6.2.21) are compact. The third term is
not compact. vet it does not cause any trouble in practical computations since
u"Dow™ + L'"b_y..r;" can be taken as 0 on the boundary. The case of boundary
condition with slip can be treated similarly. as discussed in [ELV2]. The gravity

term (1 + 'T*.'_éa,,)a,a can be dealt with in a similar fashion. The formal Taylor

expansion gives

h? — h? h® . .
(1+EA)61= DI(1+ED§—I§D;)+O(h‘)
(6.2.22) e 2
— D T np_tH 1
= D.+ 5D:D} ~ 5D.D} + O(h').

where the first and the second terms can be updated easily. vet the third term
has to be implemented by "ghost points™ value of §. which was discussed in the

last subsection. Finally. by the introduction of an intermediate variable =

(6.2.23) T=(14 =0,
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and combining the discussions in (6.2.19)-(6.2.22). the whole momentum equation

can be approximated by

(6.2.24) ‘ ‘
2T + D.(1+ %Dg)(uw) +D,(1+ %Dﬁ)(w)
h?

- — — h? , h? 2
~ 5 8n(uDzw + vDyw) = RiD: (1 + (D = D)8 = v(An + =DIDj)w.

The stream function can be solved by (6.2.20) with the boundary condition
¢ [r= 0. The velocity u = V"¢ = (~8,. 8. ¢") can be obtained by (6.2.1), the

long-stencil approximation to 9z, Jy

5 9= D h® o) h*
(6.2.25) u=—-Dy(1- EDy)w, v=D;(1—- EDI)U.
The vorticity is determined by @ via (6.2.23). The implementation of (6.2.23)

needs the boundary condition for w, which is discussed in the next subsection.

6.2.4 Fourth Order Boundary Condition for the Vorticity
\We only see the boundary I'; where j = 0 here. As already discussed in
Chapter 3. the main point of the boundary vorticity is to use the boundary

condition ¢ |r=0. (.?—.,"’.;' = 0, and convert it into « | by the kinematic relation

Av = . We can either use Briley’s formula

1

2.9 Lip =
(6.2.26) 0= g

(108%, ; — 27uy + 4wy 3) .

along with the one-sided Taylor expansions of the stream function

1 v
(6.2.27) Cocy = 6wy — 22+ s —dh [ 2= | .

3 ay .0

8 ov
(6.2.28) Cros = 40U — 15Wia + ots — 12h [ 2] .

3 ay 1.0
Or. we can use a new 4-th order formula for the vorticity. which was proposed in
Chapter 3
(6.2.29) <10 = L(87./;,-1 — 3w + —uyg — lu, 1),

B hz ~'T, 4 9 oo 8 .
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along with the estimate of the stream function at “ghost points™

5} 1 v
(6.2.30) - = 10w — 31y + 21.’.,3 - =uy4 — 2h (—i> + O(hs) .
3 1 C)y t.0

and

. O
(6.2.31)  tpco = 80w — 45%ia + 16wi3 — vy —30h (2= ) + O (k°) .
> 3y ).,

As pointed out in Chapter 4, both formulae give us fourth order accuracy
for the 2-D Navier-Stokes equations. For computational convenience. we suggest

using Briley's formula along with (6.2.27). (6.2.28) in the calculation.

Remark 6.2.3 This one-sided vorticity boundary condition was proven to be
stable and be consistent with the centered difference applied at interior points.
The whole scheme. including the one-sided approximations of the temperature
near the boundary and the vorticity boundary condition. has been shown to have

full 4-th order accuracy.

6.2.5 Time Discretization
As discussed in [ELV1], [ELV2]. the convection. diffusion terms and the
gravity term appearing in the Boussinesq equations. together with the 4-th order
spatial discretizations discussed above, can be updated explicitly. Such explicit
treatment does not result in any problem caused by the cell-Revnolds number
constraint if the Runge-Kutta method is applied. For simplicity we only present
the forward Euler time-discretization. The extension to multi-step or Runge-

Kutta methods is straightforward.

Initialization: Given {w)}, compute

K . h'2 4] —0
(6.2.32) (1+1§A,,)w' =,

Time-stepping: Given the vorticity w” and the temperature " at time ", we

compute all the profiles at the time step t"~! via the following steps.
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Step 1. Update “"“ . at interior points (r,.y,). for 1 <:.7 < V-1 usin
7 g

(6.2.33) . |
“_'————MA: = D.(1+ -';—"Dg)(u"w") +D,(1+ %Di)(cu“)
—QZA,,(U "D + v"Dyw™) — RiD: (1 + };—;(D;’ - D}))o" = v(on+ %—7020 ).
Step 2. Obtain 677! using
(6.2.34)
(%;—92 +u"D (1 - h—zpz)ouwo (1- Zzuj)e w(Ln— h—(D* +Dj))e".

If the Dirichlet boundary condition is imposed for the temperature. (6.2.34) is
updated at interior points (z;,y;). 1 < i{.j <.V — L. and the boundary value of
™! is given by (6.1.4); if the Neumann boundary condition is imposed for the

temperature. (6.2.34) is updated at all computational points (r,.y,). 0 < i.j < V.

D - pr¥l i
Step 3. Solve for {pw }lsiJ’SN—l using

h? ,
o (8n + 5 DID;) "t =2t
(6.2.35)
™t r=0
where only Sine transformations are needed. Compute ©*7! at the “ghost points”
using (6.2.27). (6.2.28) (together with Brileyv’s vorticity boundary condition (6.2.26)),
or using (6.2.30). (6.2.31) (together with the new vorticity boundary condition
(6.2.29)). We note that solving (6.2.35) only requires T"*! at interior points
(r..y,). 1 <i.j <N =1, which has been updated in Step 1.

Step 4. If the Dirichlet boundary condition is imposed for the temperature.
calculate “ghost point™ value 6; _, by the formula (6.2.7) or (6.2.9): if the Neu-
mann boundary condition is imposed for the temperature. use (6.2.14). (6.2.15)
to calculate 6 at “ghost points™.

Step 5. Since ¢"*! (including the “ghost point™ value) has been computed
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in Step 3. now we are able to obtain the boundary value for »"~! by Briley’s

formula (6.2.26) or the new fourth order formula (6.2.29).

Step 6. Now we use the boundary values for .*~! updated in Step 3. to
P p

. . g1 .
solve for {.v.” }121.131 using
h2
(62.}3) (1 + EAIL)W"TI — jnvl )
Step 7. Update the velocity uf}' . v77" using the {-th order difference scheme
, iy = R, ~ R
(6236)  u""'=-Dy(1-FDHu™. v =Dyl — =D

for i.j > L. and u**' [r=0, e"*! [r= 0.

Remark 6.2.4 In the above time-stepping procedure. the most computations
involved are the solvers for the two Poisson-like equations appearing in Step 3
and Step 5. respectively. Our numerical experiment shows that over 90 percent of
the CPU is spent in the two Poisson solvers. That makes the method extremely

efficient.

6.3 Accuracy Check Using the Lorenz System

We consider a well-known model dealing with Rayleigh-Bénard convection.
which was proposed by Lorenz(1963). He expanded the equations describing
two-dimensional nonlinear convection on a uniformly heated plane with free-free
boundaries in double Fourier series. The resulting system of equations was then

truncated radically. so that only three ODEs remained. These are the so-called
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Lorenz svstem

( dX
dT
dY . . .
(6.3.1) 4 ﬁzr.\—}‘ -ZX.
dzZ

— = -bZ + XY
T M

\

=—-oX +o0}.

in which X' is proportional to the amplitude of the convection motions. Y is pro-
portional to the temperature difference between the ascending and descending
motions. i.e. the horizontal temperature difference across a roll. and Z is propor-
tional to the deviation of the vertical temperature profile from the linear profile:

Ra’ the ratio of the Ravleigh number to the

critical Rayleigh number. b is a parameter related to the wavenumber as can be

o stands for Prandtl number, r =

shown later.
Now we fit the Lorenz system to the Boussinesq equations. A single-mode

stream function can be chosen as

(6.3.2) ve(x.t) = P(t)sin(kr)sin(y) .

and the temperature can be chosen as

(6.3.3) B.(x.t) = A(t)cos(kzx)sin(y) + B(t)sin(2y) + (= — y) .

where & is the wavenumber. It shall be noted that two different modes were used
in the temperature profile. The interaction between these two modes reveal a
rich nonlinear dvnamics phenomenon. The term 7« — y in the temperature stands
for the linear profile. Accordingly, the corresponding velocity u, = (-dyt.. 0, ¢)

and the vorticity &, = Av, are computed to be

(6.3.4) ue(x.t) = —P(t)sin(kz)cos(y), ve(x.t) =k P(t)cos(kx)sin(y).
a wolxT. t) = A\ P(t)sin(kx) sin(y) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where A\, = —(k? + 1). Plugging (6.3.2)-(6.3.4) into the momentum equation.
(6.5-)) 6,4,'8 + (ue'V)w'e - Rlaroe = I/Aw'e .

we obtain the following nonlinear ODE

dP k
6.3. — =uv M P—-Ri—A4.
(6.3.6) dt Uk W

However. these profiles do not satisfy the temperature transport equation exactly.
In the original derivation of the Lorenz equation. the high order production term
was truncated, which leads to the Lorenz system (6.3.1). This can be reformulated
by adding a force term. which represents the truncated term. to the heat transport

equation. so that the profiles satisfy

(6.3.7) 06, +u.-VO0, = k. + f.
where
(6.3.8) f= 2PBcos(k1')sin(y)(cos(‘2y) - 1) )

(6.3.7) and (6.3.8) result in the following ODEs

%‘; — kP +rAA—2kBP.
(6.3.9) dB k
I = —-1K,B - §P.'l.

We can see that (6.3.6). (6.3.9) form a closed system of ODEs for the pa-
rameters P(t). A(t). B(t). The equivalence between them and the parameters
X. Y. Z appearing in the Lorenz system (6.3.1) can be derived by the following
scaling transformations: denoting X = aP. Y = 34, Z =-B. t = "T[\' and

substituting into (6.3.1). we get

(6.3.10) o= z .or=
IS
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and

k Ri-k?
6.3.1 = .3 = .
( ) RS W UKA}

2Rik?

3
VKA

~ =

from which it can be seen that o is the Prandtl number. b is one parameter related
to the wavenumber. r is the ratio of the Rayleigh number to the critical Rayvleigh

number.

6.3.1 Accuracy Check

\We use our fourth order method proposed in §2 to solve the Boussinesq
flow with force term (6.3.3), (6.3.7). (6.3.8). The initial data is taken as the
profiles (6.3.2)-(6.3.4) when ¢t = 0. and A(0). B(0), C(0) are chosen to be 1. The
vorticity boundary condition is taken to be the new 4-th order formula (6.2.29).
The application of Briley's formula (6.2.26) leads to a similar accuracy result.
Both the Dirichlet and Neumann boundary condition for the temperature can be
imposed in this example. In the case of the Dirichlet boundary condition. the
5-th order formula (6.2.7) is used as our extrapolation for the temperature near
the boundary. while the 4-th order formula (6.2.9) leads to almost the same result
in our computation. In the case of the Neumann boundary condition, (6.2.14).
(6.2.15) is used as our extrapolation for the temperature near the boundary. while
the force term has to be added and the slip velocity on the boundary. which can
be seen from (6.3.4). will be taken into consideration when we derive 8;‘0 on [ ;.

We choose the wave number k = 1. The final time is taken to be t = 2.0. The
other physical parameters are chosen as: Ri = 1, v = & = 0.001. Accordingly.
r=1.25x10°. ¢ =1 and b = 2. The computational domain is chosen as [0. 7*
with uniform spatial grids Ar = Ay = h. and the time step At = {Ar.

The exact solutions of stream function and temperature are given by (6.3.2).
(6.3.3). where the coefficients P(¢). A(t) and B(t) are computed by the {4-th order

Runge-Kutta method applied to the system (6.3.6), (6.3.9).
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322, 64%. 1282, 2562. The absolute errors of stream function. vorticity and
temperature are listed in Table 6.1 and Table 6.2. with Dirichlet and Neumann
boundary conditions for the temperature imposed. respectivelyv. \We can see in
the tables that the temperature and the stream function achieve exactlyv fourth
order accuracy. The vorticity achieves almost fourth order accuracy in L'. L?

norms and a little less than fourth order accuracy in L> norms.
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6.4 Computation of Marsigli Flow

To illustrate the performance of the fourth order method, we compute an
example of Marsigli flow which has been known since the 17th century. This
example can be found in the work of Marsigli (1681). The detailed story is

described in Gill's book " Atmosphere-Ocean Dynamics” [GILL] as follow.

It seems that when Marsigli went to Constantinople in 1679 he was
told about a well-known undercurrent in the Bosphorous: “... for the
fisherman of the towns on the Bosphorous say that the whole stream
does not flow in the direction of Byzantium. but while the upper
current which we can see plainly does flow in this direction, the deep
water of the abyvss. as it is called. moves in a direction exactly opposite
to that of the upper current and so flows continuously against the
current which is seen”. That is. the undercurrent water flows toward
the Black Sea from the Mediterranean. Marsigli reasoned that the
effect was due to density differences: water from the Black Sea is
lighter than water from the Mlediterranean. The lower density of
the Black Sea can be attributed to lower salinity resulting from river
runoff. He then performed a laboratorv experiment: A container
is initially divided in two by a partition. The left side contained
water taken from the undercurrent in the Bosphorous, while the right
side contained dyed water having the density of surface water in the
Black Sea. The experiment was to put two holes in the partition to
observe the resulting flow. The flow through the lower hole was in
the direction of the undercurrent in the Bosphorous, while the flow

through the upper hole was in the direction of the surface flow.
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We simulated the above physical process in a simple setup: Boussinesq
flow with two initially piecewise constant temperatures in an insulated box ©Q =
[0.8] x [0.1]. The partition was located at £ = 4. The temperature was chosen to
be 1.5 at the left half, which indicated the lower density. 1 at the right half. which
indicated the higher density. (By Boussinesq assumption. the density difference
can be converted into temperature difference with the reverse ratio). The whole
How was at rest at ¢ = 0. A no-slip boundaryv condition was imposed for the ve-
locity and adiabatic boundary condition was imposed for the temperature. The
computational method was based on the fourth order scheme discussed above
coupled with 4-th order Runge-Kutta time stepping. as described in 2.5. Bri-
lev’s formula (6.2.26) was used as the boundary condition for the vorticity. The
adiabatic boundary condition imposed for the temperature indicated the use of
(6.2.16). (6.2.17) to evaluate the temperature at “ghost point”. In our computa-
tion. the Revnolds number was chosen to be Re = 5000. the Prandtl number was
chosen to be 1, and the Richardson number R:. which corresponds to the gravity
effect. was chosen to be 4. We repeated the computations using two resolutions:
2048 x 256, 4096 x 512.

The computation results on the resolution of 2048 x 256 of temperature and
vorticity at a sequence of times: ¢, = 2. t, = 1. t; = 6. ty = 8 are shown in
Fig. 6.1. Fig. 6.2, respectively. To save the space. we only plot the vorticity
on the left-half domain [0.4] x [0,1]. The vorticity on the right-half domain
[1.8] x [0.1} is axis-symmetric to that of the left-half domain. Like Riemann
shock-tube problem, once the partition was removed. the flow was driven by the
gravity force. The results indicated clearly the appecarance of an upper current
flow. which moved from the left side to the right side. and an undercurrent
flow. which moved in the opposite direction. It coincided with the phenomenon

observed by Marsigli. Consequently. a sharp interface was formed between the
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two currents. In other words, two currents with different moving directions were
separated by an interface. Strong shear flow and vortex sheet came into being
along the interface. This vortex sheet exhibited the Kelvin-Helmholtz instability.
As a result. at ¢; = 2. two svmmetric vortices and the rolling up structures
were formed. As the time goes on. more and more rolling-up structures were
generated and swelled. To see the details. we plot the temperature and vorticity
in a zooming region of [2.5. 3.3] x [0. 1] at ¢3 = 6. on the resolution of 4096 x 512,
in Fig. 6.3 and Fig. 6.4, respectively.

The numerical simulation for this type of Kelvin-Helmholtz instability is
quite challenging. To verify the accuracy of our method. we compare the tem-
perature and the vorticity at timet =6 ona y = f; cut between two resolutions:
2048 x 256. 1096 x 512 in Fig. 6.5 and Fig. 6.6. respectively. It is evident that
even though there are so many rolling up structures and sharp transitional areas
for temperature and vorticity profiles. the results using two resolutions match

perfectly well.
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Figure 6.1: Temperature plots at a sequence of times at ¢, = 2. ¢, = 4. t3 = 6,
t; = 8. of the interaction between two flow with different densities 2 : 1 in an
insulated box Q = [0.8] x [0. 1]. Initially, the two flows are partitioned at £ = 4.
Other physical parameters: Re = 5000, Pr = 1. Ri = 4. The computation is

based on the fourth order method with 2048 x 256 resolution.
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Table 6.1: Errors and orders of accuracy for Boussinesq equation at ¢t = 2 when
the fourth order method is used and the Dirichlet boundary condition for the

ay

temperature is imposed. CFL=3, where CFL= £.
IV ] L= error | L*= order ]| L' error | LT order ]| L? error | L order ]
f 32 || 1.25e-04 4.82e-04 2.00e-04
64 7.85e-06 3.99 3.11e-05 3.96 1.27e-05 3.98
6 || 128 || 1.89e-07 4.00 1.96e-06 3.99 7.95e-07 4.00
256 | 3.07e-08 4.00 1.23e-07 4.00 4.99e-08 1.00
32 4.97e-05 1.46e-04 6.50e-05
64 3.21e-06 3.95 9.45e-06 3.95 4.21e-06 3.95
vl 128 || 2.01e-07 4.00 3.94e-07 3.99 2.64e-07 4.00
25 1.27e-08 3.99 3.74e-08 3.99 1.66e-08 3.99
32 6.38e-04 8.50e-04 3.93e-04
64 1.46e-05 3.84 4.88e-05 4.12 2.33e-05 4.07
< i 128 || 4.31e-06 3.37 3.07e-06 3.99 1.57e-06 3.90
256 || 4.69e-07 3.20 2.07e-07 3.89 1.15e-07 3.77

Table 6.2: Errors and orders of accuracy for Boussinesq equation at ¢ = 2 when
the fourth order method is used and the Neumann boundary condition for the

temperature is imposed. CFL=1, where CFL= %.

___ [ -V i L= error [ L* order ]| L! error [ LT order | L? error | L? order |
32 1.23e-04 4.92e-04 2.01e-04
04 7.78e-06 3.98 3.16e-05 3.96 1.28e-05 3.97
7] 128 || 1.86e-07 4.00 1.99e-06 3.99 8.01e-07 4.00
256 II 3.05e-08 4.00 1.25e-07 3.99 5.03¢-08 3.99
32 5.04e-05 1.49e-04 6.63e-05
61 3.23e-06 3.96 9.57e-06 3.96 4.26e-06 3.96
e |l 128 | 2.02e-07 4.00 6.00e-07 1.00 2.67e-07 1.00
256 1.27e-08 3.99 3.78e-08 3.99 1.68e-08 3.99
32 4.0le-04 6.69e-04 2.79e-04
64 3.44e-05 3.54 4.07e-05 4.04 1.72e-05 4.02
< I 128 |l 3.55¢-06 3.28 2.69e-06 3.92 1.27e-06 3.76
256 {f 2.85e-07 3.64 1.83e-07 3.88 9.33e-08 3.77
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Figure 6.2: Vorticity plots on the left half domain [0.4] x [0.1]. at the same
sequence of times with the same physical parameters in Fig. 3.1 and the same
resolution. 40 equallyv spaced contours from -21 to 31. We omit the vorticity
plots on the right half domain [4.8] x [0, 1]. which is axis-symmetric to the left
half domain.
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Figure 6.3: Zooming plot of temperature at ¢t = 6 in {2.5,3.5] x [0.1]. 40 equally
spaced contours from 1.001 to 1.499.
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Figure 6.5: Comparison of temperature profile at y = % cut, ¢t = 6 between

two resolutions: the solid line represents the result compl-lted by the resolution
4096 x 312, while the star line represents that of 2048 x 256. To make the plot
clearly. we only plot the even points in the start line. In other words, the graph
of the star line only shows 1025 points.
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Figure 6.6: The comparison between the two resolutions for the vorticity with
the same horizontal line and time.
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