
One-Dimensional Line Schemes

Michaela Vancliff

University of Texas at Arlington, USA

http://www.uta.edu/math/vancliff/R vancliff@uta.edu

Partial support from NSF DMS-1302050.



Motivation

Throughout, k = algebraically closed field.

Van den Bergh (early 1990s):
any quadratic algebra on 4 generators with 6 generic defining relations
has 20 nonisomorphic truncated point modules of length 3
(20 is counted with multiplicity);
if also AS-regular, then it has a 1-parameter family of line modules
(in today’s language, a 1-dimensional line scheme).

Shelton & Vancliff (late 1990s):
any quadratic algebra on 4 generators with 6 defining relations that

has a finite scheme z of trunc
point modules of length 3
=⇒ can recover the
defining relations from z;

or

is AS-reg ( + a few more hyps )
& has a 1-diml line scheme L
=⇒ can recover the defining
relations from L.
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Longterm Goal

Classify all quadratic AS-regular algebras A of gldim 4 using z or L.

Subgoal

Identify those L of dim = 1 where |z| = 20 (or |z| <∞).

Regarding the subgoal: for an embedding in some “appropriate” projective
space, can one determine possible degree(s) of L, at least if dim(L) = 1?

I plan to address this question in today’s talk.

Notation

Write A = T (V )/〈R〉 where

dim(V ) = 4, R ⊂ V ⊗ V , dim(R) = 6.
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Set-up (Points)

P(V ∗)× P(V ∗) ∼= Ω1 = P(rank-1 elements) ⊂ P(V ∗ ⊗ V ∗)

P(R⊥) ⊂ P(V ∗ ⊗ V ∗)

z ∼= Ω1 ∩ P(R⊥)

{
 

dim = 6
deg = 20

dim(Ω1 ∩ P(R⊥)) ≥ 6 + 9− 15 = 0 =⇒ z nonempty.

Also, deg(Ω1 ∩ P(R⊥)) = (20)(1) = 20 by Bézout’s Thm

and examples of z are known where |z| <∞.

=⇒ |generic z| = 20 (counted with multiplicity).

So, “generic” R means P(R⊥) meets Ω1 with minimal dimension,

in which case |z| = 20 (counted with multiplicity).
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Set-up (Lines)

P5 ∼= P(R) ⊂ P(V ⊗ V )

Ω2 = P(rank ≤ 2 elements) ⊂ P(V ⊗ V )

AS-regular etc ⇒ use Prop 2.8 in T. Levasseur & S.P. Smith’s paper

=⇒ line scheme LR
∼= Ω2 ∩ P(R) 63 any rank-1 elements.

dim = 11 {

=⇒ dim(each irred component of LR) ≥ 11 + 5− 15 = 1.

Snag: in order to compare the lines with the points, we wish to view

LR ⊂ Grassmannian G (2,V ∗) = scheme that parametrizes all lines in P(V ∗).

As G (2,V ∗)
Plücker
↪−→ P(

∧2 V ∗) = P5, we have

Question: what is deg(LR) viewed in this P5, at least when dim(LR) = 1?

Joint work with A. Chirvasitu & S.P. Smith ⇒ deg(LR) = 20 if dim(LR) = 1.
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Approach

Main idea: work with “dual” scheme that has same degree as LR

in a “dual” P5.

i.e., let L⊥R = scheme in G (2,V ) that parametrizes all dim-2 Q ⊂ V

such that (Q ⊗ V ) ∩ R 6= 0.{
rank-2 element in P(V ⊗ V )

LR
∼= L⊥R ⊂ G (2,V )

Plücker
↪−→ P(

∧2 V ) = P5

& the map P(
∧2 V )→ P(

∧2 V ∗) is homogeneous of degree 1, so

deg(L⊥R ) = deg(LR).
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Main Result

Theorem [Chirvasitu, Smith, V]

Let V be a 4-dimensional vector space, R ⊂ V ⊗ V , where dim(R) = 6, & let

L⊥R be the scheme whose reduced variety is

{Q ∈ G (2,V ) : (Q ⊗ V ) ∩ R 6= 0}.
(Note: no hypothesis on T (V )/〈R〉 being regular or having good Hilbert series, etc.)

(a) dim(each irred component of L⊥R ) ≥ 1;

(b) {L⊥R : R ⊂ V ⊗ V , dim(R) = 6, dim(L⊥R ) = 1} is a flat family;

(c) if char(k) 6= 2 & if dim(L⊥R ) = 1, then deg(L⊥R ) = 20, where

L⊥R ↪−→ P(
∧2 V ) = P5.

The lack of homological hypotheses means the theorem is a result about
6-dimensional subspaces of the space of 4× 4 matrices.

(And when the algebra is not regular, the schemes LR and L⊥R parametrize the
truncated right line modules of dimension three.)
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Idea of Proof

Prove (a) and (b), and then use (b) (i.e., flatness) to prove deg(L⊥R )

is a constant for all R that satisfy the hypotheses of the theorem

where dim(L⊥R ) = 1;

then exhibit an example that has deg(L⊥R ) = 20.

For the example, we used an algebra I had previously studied with

R. Chandler, but that work assumed char(k) = 0. So we computed the

degree assuming char(k) 6= 2.

Will now present 3 examples of LR , where T (V )/〈R〉 is regular & char(k) = 0.
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1st Example [Chandler, V]

Let γ, i ∈ k×, i2 = −1, V = span of x1, . . . , x4, & R = span of:

x4x1 − ix1x4, x2
3 − x2

1 , x3x1 − x1x3 + x2
2 ,

x3x2 − ix2x3, x2
4 − x2

2 , x4x2 − x2x4 + γx2
1 .

If γ(γ2 − 4) 6= 0, then |z| = 20 and can be grouped naturally in P3 into
2 sets of 2 points and 4 sets of 4 points (call latter type generic points).

If γ(γ2 − 16) 6= 0, then LR = union of 6 subschemes in P5:

1 nonplanar deg-4 elliptic curve in a P3 (i.e., spatial elliptic curve),

4 planar elliptic curves,

a subscheme in a P3 consisting of the union of 2 nonsingular conics.

Each of the 16 generic points of z lies on 6 distinct lines parametrized by LR

(1 line from each of the above 6 subschemes).

Each of the remaining 4 points lies on infinitely many lines parametrized by LR .
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2nd Example [Derek Tomlin, V]
Let α ∈ k, α(α2 − 1) 6= 0, V = span of x1, . . . , x4, R = span of:

x1x3 + x3x1, x2x3 − x3x2, x2x4 + x4x2 − x2
3 ,

x1x4 + x4x1, x2
2 − x2

4 , 2x2
2 + αx2

3 − x2
1 .

|z| = 20 & the points can be grouped naturally in P3 into 10 sets of 2 points.

LR = union of 6 subschemes in P5:
1 nonplanar deg-4 elliptic curve in a P3, (i.e., spatial elliptic curve),

1 nonplanar deg-4 rational curve (with 1 singular point) in a P3,

2 planar elliptic curves,

2 subschemes, each of which consists of the union of a nonsingular conic
and a line (that meets the conic in 2 distinct points).

∃ 16 points p ∈ z such that p lies on 6 lines (ctd with mult) of those
parametrized by LR (1 line from each of the above 6 subschemes, but some lines
belong to more than 1 family).
Each of the remaining 4 points lies on infinitely many lines parametrized by LR .
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3rd Example [Chirvasitu, Smith, Derek Tomlin]
Let α1, α2, α3 ∈ k \ {0, −1, 1}, where α1 + α2 + α3 + α1α2α3 = 0,
V = span of x1, . . . , x4, R = span of:

x4xi − xix4 − αi (xjxk − xkxj), x4xi + xix4 − αi (xjxk + xkxj),

where (i , j , k) cycles through (1, 2, 3).

|z| = 20 & the points can be grouped naturally in P3 into 6 sets of 2 points and
8 other points.

LR = union of 7 irreducible subschemes in P5:

3 nonplanar deg-4 elliptic curves in a P3, (i.e., spatial elliptic curves E1, E2, E3),

4 nonsingular conics.

∃ 16 points p ∈ z such that p ∈ 3 lines, each given by a distinct conic, and
p ∈ 3 other lines, each given by a distinct elliptic curve.
The remaining 4 points p ∈ z are such that p ∈ 2 lines given by Ei , i = 1, 2, 3 (6 total).

1st 2 examples are graded skew Clifford algebras, but 3rd does not appear to be
related to a graded skew Clifford algebra.
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Conjectures

Lines Conjecture

One of the generic classes of quadratic AS-regular algebra of gldim 4 has

line scheme that consists of

the union of 2 deg-4 spatial elliptic curves & 4 planar elliptic curves

( (2)(4) + (4)(3) = 20 );

and another generic class has line scheme that consists of

the union of 4 deg-4 spatial elliptic curves & 2 nonsingular conics

( (4)(4) + (2)(2) = 20 ).

Points Conjecture

Generic R =⇒ a⊗ b ∈ R⊥ iff b ⊗ a ∈ R⊥.
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Future Work?
Identify more LR , perhaps where |z| < 20?

Can LR = a union of lines? 20 distinct lines? (even if A not AS-regular)

I M. Artin, J. Tate & M. Van den Bergh, Some Algebras Associated to
Automorphisms of Elliptic Curves, The Grothendieck Festschrift 1, 33-85, Eds. P. Cartier
et al., Birkhäuser (Boston, 1990).

I R. G. Chandler & M. Vancliff, The One-Dimensional Line Scheme of a Certain
Family of Quantum P3s, J. Algebra 439 (2015), 316-333.

I A. Chirvasitu & S. P. Smith, Exotic Elliptic Algebras of Dimension 4 (with an
Appendix by Derek Tomlin), Adv. Math. 309 (2017), 558-623.

I A. Chirvasitu, S. P. Smith & M. Vancliff, A Geometric Invariant of 6-Dimensional
Subspaces of 4× 4 Matrices, 1st draft at arXiv:1512.03954.

I D. Tomlin & M. Vancliff, The One-Dimensional Line Scheme of a Family of
Quadratic Quantum P3s, preprint 2017. (arXiv:1705.10426)

I M. Vancliff, The Interplay of Algebra and Geometry in the Setting of Regular Algebras,
in “Commutative Algebra and Noncommutative Algebraic Geometry,” MSRI Publications
67 (2015), 371-390.
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Appendix: G (2,V )
Plücker

↪−→ P(
∧2 V ) = P5

Write V =
⊕4

i=1 kxi , u =
∑4

i=1 uixi , w =
∑4

i=1 wixi ∈ V ,

Q = ku ⊕ kw 7→ u ∧ w =
∑

i<j Nij xi ∧ xj ∈ P(
∧2 V ) = P5

& the Nij are the 2× 2 minors of

[
u1 u2 u3 u4

w1 w2 w3 w4

]
.

The 6 Nij are homogeneous coordinates on P(
∧2 V ) = P5.
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