One-Dimensional Line Schemes Michaela Vancliff

University of Texas at Arlington, USA http://www.uta.edu/math/vancliff/R vancliff@uta.edu

Partial support from NSF DMS-1302050.

Motivation

Throughout, k = algebraically closed field.

```
Van den Bergh (early 1990s):
any quadratic algebra on 4 generators with 6 generic defining relations
has 20 nonisomorphic truncated point modules of length 3
(20 is counted with multiplicity);
if also AS-regular, then it has a 1-parameter family of line modules
(in today's language, a 1-dimensional line scheme).
```

```
Shelton & Vancliff (late 1990s):
```

any quadratic algebra on 4 generators with 6 defining relations that

has a finite scheme \mathfrak{z} of trunc point modules of length 3 \implies can recover the defining relations from \mathfrak{z} ; or & has a 1-diml line scheme \mathfrak{L} \Longrightarrow can recover the defining relations from \mathfrak{L} .

Longterm Goal

Classify all quadratic AS-regular algebras A of gldim 4 using \mathfrak{z} or \mathfrak{L} .

Subgoal

Identify those \mathfrak{L} of dim = 1 where $|\mathfrak{z}| = 20$ (or $|\mathfrak{z}| < \infty$).

Regarding the subgoal: for an embedding in some "appropriate" projective space, can one determine possible degree(s) of \mathfrak{L} , at least if dim(\mathfrak{L}) = 1? I plan to address this question in today's talk.

Notation		
Write A	$V = T(V)/\langle R angle$	where
$\dim(V)=4,$	$R\subset V\otimes V$,	$\dim(R) = 6.$

Set-up (Points)

$$\mathbb{P}(V^*) \times \mathbb{P}(V^*) \cong \underbrace{\Omega_1}_{\overset{r^*}{\underset{dig = 20}{\overset{r^*}{\underset{deg = 20$$

dim $(\Omega_1 \cap \mathbb{P}(R^{\perp})) \ge 6 + 9 - 15 = 0 \implies \mathfrak{z}$ nonempty. Also, deg $(\Omega_1 \cap \mathbb{P}(R^{\perp})) = (20)(1) = 20$ by Bézout's Thm and examples of \mathfrak{z} are known where $|\mathfrak{z}| < \infty$.

 \implies |generic \mathfrak{z} | = 20 (counted with multiplicity).

So, "generic" R means $\mathbb{P}(R^{\perp})$ meets Ω_1 with minimal dimension, in which case $|\mathfrak{z}| = 20$ (counted with multiplicity).

Set-up (Lines)

$$\begin{split} \underset{\mathcal{V}}{\dim} &= 11 \qquad \mathbb{P}^5 \cong \mathbb{P}(R) \subset \mathbb{P}(V \otimes V) \\ & \overbrace{\Omega_2}^{\sim} = \mathbb{P}(\mathsf{rank} \leq 2 \; \mathsf{elements}) \subset \mathbb{P}(V \otimes V) \end{split}$$

AS-regular etc \Rightarrow use Prop 2.8 in T. Levasseur & S.P. Smith's paper \Rightarrow line scheme $\mathfrak{L}_R \cong \Omega_2 \cap \mathbb{P}(R) \not\ni$ any rank-1 elements.

 \implies dim(each irred component of \mathfrak{L}_R) $\ge 11 + 5 - 15 = 1$.

Snag: in order to compare the lines with the points, we wish to view $\mathfrak{L}_R \subset$ Grassmannian $G(2, V^*)$ = scheme that parametrizes all lines in $\mathbb{P}(V^*)$. As $G(2, V^*) \xrightarrow{\text{Plücker}} \mathbb{P}(\bigwedge^2 V^*) = \mathbb{P}^5$, we have

Question: what is deg (\mathfrak{L}_R) viewed in this \mathbb{P}^5 , at least when dim $(\mathfrak{L}_R) = 1$?

Joint work with A. Chirvasitu & S.P. Smith $\Rightarrow \deg(\mathfrak{L}_R) = 20$ if $\dim(\mathfrak{L}_R) = 1$.

Approach

Main idea: work with "dual" scheme that has same degree as \mathfrak{L}_R in a "dual" \mathbb{P}^5 .

i.e., let $\mathfrak{L}_R^{\perp} =$ scheme in G(2, V) that parametrizes all dim-2 $Q \subset V$ such that $(Q \otimes V) \cap R \neq 0$. rank-2 element in $\mathbb{P}(V \otimes V)$

$$\mathfrak{L}_R\cong\mathfrak{L}_R^\perp\subset {\mathcal G}(2,V)\stackrel{ ext{Plücker}}{\longrightarrow} \mathbb{P}(igwedge^2 V)=\mathbb{P}^5$$

& the map $\mathbb{P}(\bigwedge^2 V) \to \mathbb{P}(\bigwedge^2 V^*)$ is homogeneous of degree 1, so $\deg(\mathfrak{L}_R^{\perp}) = \deg(\mathfrak{L}_R).$

Main Result

Theorem [Chirvasitu, Smith, V]

Let V be a 4-dimensional vector space, $R \subset V \otimes V$, where dim(R) = 6, & let \mathfrak{L}_R^{\perp} be the scheme whose reduced variety is

 $\{Q\in G(2,V): (Q\otimes V)\cap R\neq 0\}.$

(Note: no hypothesis on $T(V)/\langle R \rangle$ being regular or having good Hilbert series, etc.) (a) dim(each irred component of \mathfrak{L}_R^{\perp}) ≥ 1 ;

(b)
$$\{\mathfrak{L}_R^\perp: R \subset V \otimes V, \ \dim(R) = 6, \ \dim(\mathfrak{L}_R^\perp) = 1\}$$
 is a flat family;

(c) if char(
$$\mathbb{k}$$
) $\neq 2$ & if dim(\mathfrak{L}_{R}^{\perp}) = 1, then deg(\mathfrak{L}_{R}^{\perp}) = 20, where
 $\mathfrak{L}_{R}^{\perp} \hookrightarrow \mathbb{P}(\bigwedge^{2} V) = \mathbb{P}^{5}.$

The lack of homological hypotheses means the theorem is a result about 6-dimensional subspaces of the space of 4×4 matrices.

(And when the algebra is not regular, the schemes \mathfrak{L}_R and \mathfrak{L}_R^{\perp} parametrize the truncated right line modules of dimension three.)

Idea of Proof

- Prove (a) and (b), and then use (b) (i.e., flatness) to prove deg(L_R[⊥]) is a constant for all R that satisfy the hypotheses of the theorem where dim(L_R[⊥]) = 1;
- then exhibit an example that has $\deg(\mathfrak{L}_R^{\perp}) = 20$.

For the example, we used an algebra I had previously studied with R. Chandler, but that work assumed $char(\Bbbk) = 0$. So we computed the degree assuming $char(\Bbbk) \neq 2$.

Will now present 3 examples of \mathfrak{L}_R , where $T(V)/\langle R \rangle$ is regular & char(\Bbbk) = 0.

1st Example [Chandler, V]

Let γ , $i \in \mathbb{k}^{\times}$, $i^2 = -1$,	V = span of x	x_1, \ldots, x_4 , & $R = $ span of:
$x_4x_1-ix_1x_4,$	$x_3^2 - x_1^2$,	$x_3x_1 - x_1x_3 + x_2^2,$
$x_3x_2-ix_2x_3,$	$x_4^2 - x_2^2$,	$x_4 x_2 - x_2 x_4 + \gamma x_1^2.$

If $\gamma(\gamma^2 - 4) \neq 0$, then $|\mathfrak{z}| = 20$ and can be grouped naturally in \mathbb{P}^3 into 2 sets of 2 points and 4 sets of 4 points (call latter type generic points).

If $\gamma(\gamma^2 - 16) \neq 0$, then $\mathfrak{L}_R =$ union of 6 subschemes in \mathbb{P}^5 :

- 1 nonplanar deg-4 elliptic curve in a \mathbb{P}^3 (i.e., spatial elliptic curve),
- 4 planar elliptic curves,
- a subscheme in a \mathbb{P}^3 consisting of the union of 2 nonsingular conics.

Each of the 16 generic points of \mathfrak{z} lies on 6 distinct lines parametrized by \mathfrak{L}_R (1 line from each of the above 6 subschemes).

Each of the remaining 4 points lies on infinitely many lines parametrized by \mathfrak{L}_R .

2nd Example [Derek Tomlin, V]

Let $\alpha \in \mathbb{k}$, $\alpha(\alpha^2 - 1) \neq 0$, $V = \text{span of } x_1, \dots, x_4$, R = span of:

$x_1x_3+x_3x_1,$	$x_2x_3-x_3x_2,$	$x_2x_4 + x_4x_2 - x_3^2,$
$x_1x_4+x_4x_1,$	$x_2^2 - x_4^2$,	$2x_2^2 + \alpha x_3^2 - x_1^2.$

 $|\mathfrak{z}| = 20$ & the points can be grouped naturally in \mathbb{P}^3 into 10 sets of 2 points.

 \mathfrak{L}_R = union of 6 subschemes in \mathbb{P}^5 :

- 1 nonplanar deg-4 elliptic curve in a \mathbb{P}^3 , (i.e., spatial elliptic curve),
- 1 nonplanar deg-4 rational curve (with 1 singular point) in a \mathbb{P}^3 ,
- 2 planar elliptic curves,
- 2 subschemes, each of which consists of the union of a nonsingular conic and a line (that meets the conic in 2 distinct points).

 \exists 16 points $p \in \mathfrak{z}$ such that p lies on 6 lines (ctd with mult) of those parametrized by \mathfrak{L}_R (1 line from each of the above 6 subschemes, but some lines belong to more than 1 family). Each of the remaining 4 points lies on infinitely many lines parametrized by \mathfrak{L}_R .

3rd Example [Chirvasitu, Smith, Derek Tomlin]

Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{k} \setminus \{0, -1, 1\}$, where $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_1 \alpha_2 \alpha_3 = 0$, $V = \text{span of } x_1, \dots, x_4$, R = span of:

 $x_4x_i - x_ix_4 - \alpha_i(x_jx_k - x_kx_j),$ $x_4x_i + x_ix_4 - \alpha_i(x_jx_k + x_kx_j),$ where (i, j, k) cycles through (1, 2, 3).

 $|\mathfrak{z}| = 20$ & the points can be grouped naturally in \mathbb{P}^3 into 6 sets of 2 points and 8 other points.

 \mathfrak{L}_R = union of 7 irreducible subschemes in \mathbb{P}^5 :

- 3 nonplanar deg-4 elliptic curves in a \mathbb{P}^3 , (i.e., spatial elliptic curves E_1 , E_2 , E_3),
- 4 nonsingular conics.

∃ 16 points $p \in \mathfrak{z}$ such that $p \in \mathfrak{z}$ lines, each given by a distinct conic, and $p \in \mathfrak{z}$ other lines, each given by a distinct elliptic curve. The remaining 4 points $p \in \mathfrak{z}$ are such that $p \in \mathfrak{z}$ lines given by E_i , i = 1, 2, 3 (6 total).

1st 2 examples are graded skew Clifford algebras, but 3rd does not appear to be related to a graded skew Clifford algebra.

M. Vancliff (vancliff@uta.edu)

uta.edu/math/vancliff/R

Conjectures

Lines Conjecture

One of the generic classes of quadratic AS-regular algebra of gldim 4 has line scheme that consists of

the union of 2 deg-4 spatial elliptic curves & 4 planar elliptic curves
 ((2)(4) + (4)(3) = 20);

and another generic class has line scheme that consists of

the union of 4 deg-4 spatial elliptic curves & 2 nonsingular conics
 ((4)(4) + (2)(2) = 20).

Points Conjecture

Generic $R \implies a \otimes b \in R^{\perp}$ iff $b \otimes a \in R^{\perp}$.

Future Work?

Identify more \mathfrak{L}_R , perhaps where $|\mathfrak{z}| < 20$?

Can \mathfrak{L}_R = a union of lines? 20 distinct lines? (even if A not AS-regular)

- M. ARTIN, J. TATE & M. VAN DEN BERGH, Some Algebras Associated to Automorphisms of Elliptic Curves, *The Grothendieck Festschrift* 1, 33-85, Eds. P. Cartier et al., Birkhäuser (Boston, 1990).
- ▶ R. G. CHANDLER & M. VANCLIFF, The One-Dimensional Line Scheme of a Certain Family of Quantum P³s, J. Algebra 439 (2015), 316-333.
- ▶ A. CHIRVASITU & S. P. SMITH, Exotic Elliptic Algebras of Dimension 4 (with an Appendix by Derek Tomlin), *Adv. Math.* **309** (2017), 558-623.
- ▶ A. CHIRVASITU, S. P. SMITH & M. VANCLIFF, A Geometric Invariant of 6-Dimensional Subspaces of 4 × 4 Matrices, 1st draft at arXiv:1512.03954.
- ▶ D. TOMLIN & M. VANCLIFF, The One-Dimensional Line Scheme of a Family of Quadratic Quantum P³s, preprint 2017. (arXiv:1705.10426)
- M. VANCLIFF, The Interplay of Algebra and Geometry in the Setting of Regular Algebras, in "Commutative Algebra and Noncommutative Algebraic Geometry," *MSRI Publications* 67 (2015), 371-390.

Appendix: $G(2, V) \stackrel{\text{Plücker}}{\longrightarrow} \mathbb{P}(\bigwedge^2 V) = \mathbb{P}^5$

Write
$$V = \bigoplus_{i=1}^4 \mathbb{k} x_i$$
, $u = \sum_{i=1}^4 u_i x_i$, $w = \sum_{i=1}^4 w_i x_i \in V$,

$$Q = \Bbbk u \oplus \Bbbk w \mapsto u \wedge w = \sum_{i < j} N_{ij} \, x_i \wedge x_j \in \mathbb{P}(\bigwedge^2 V) = \mathbb{P}^5$$

& the
$$N_{ij}$$
 are the 2 \times 2 minors of $\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \\ w_1 & w_2 & w_3 & w_4 \end{bmatrix}$.

The 6 N_{ij} are homogeneous coordinates on $\mathbb{P}(\bigwedge^2 V) = \mathbb{P}^5$.