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Motivation

Throughout, k = algebraically closed field. J

Van den Bergh (early 1990s):

any quadratic algebra on 4 generators with 6 generic defining relations
has 20 nonisomorphic truncated point modules of length 3

(20 is counted with multiplicity);

if also AS-regular, then it has a 1-parameter family of line modules

(in today’s language, a 1-dimensional line scheme).

Shelton & Vancliff (late 1990s):
any quadratic algebra on 4 generators with 6 defining relations that

has a finite scheme 3 of trunc is AS-reg ( + a few more hyps )
point modules of length 3 or & hasa 1-diml line scheme £
— can recover the = can recover the defining
defining relations from j3; relations from £.
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Longterm Goal
Classify all quadratic AS-regular algebras A of gldim 4 using 3 or £. J

Subgoal
Identify those £ of dim = 1 where |3| = 20 (or |3| < c0).

Regarding the subgoal: for an embedding in some “appropriate” projective
space, can one determine possible degree(s) of £, at least if dim(£) = 17

| plan to address this question in today's talk.

Notation
Write A=T(V)/(R) where

dim(V) = 4, RCcVeyV, dim(R) = 6.
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Set-up (Points)

P(V*) x P(V*) = Qp = P(rank-1 elements) C P(V* ® V*)
—

dim :6 P(R+) c P(V* @ V¥)

deg = 20
3= Q1N P(RJ‘)
dim(Q NP(RY)) >6+9—15=0 = 3 nonempty.
Also, deg(Q; NP(R*)) = (20)(1) =20 by Bézout’s Thm
and examples of 3 are known where |3| < co.

= |generic 3| =20 (counted with multiplicity).

So, “generic’ R means ]P’(RL) meets 7 with minimal dimension,

in which case |3] =20 (counted with multiplicity).
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Set-up (Lines)

dim = 11 PP~ P(R) CP(V® V)

im =
<
Qo = P(rank < 2 elements) C P(V ® V)

AS-regular etc = use Prop 2.8 in T. Levasseur & S.P. Smith's paper

= line scheme £r = Q NP(R) # any rank-1 elements.

= dim(each irred component of £g) > 11+5—15=1.

Snag: in order to compare the lines with the points, we wish to view
Lr C Grassmannian G(2, V*) = scheme that parametrizes all lines in P(V*).
Pliicker

As G(2,V*) =3 P(A\? V*) = P®, we have

Question: what is deg(£g) viewed in this P°, at least when dim(£g) = 1?J

Joint work with A. Chirvasitu & S.P. Smith = deg(£g) = 20 if dim(£g) = 1.
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Approach

Main idea: work with “dual” scheme that has same degree as £g

ina “dual” P®.

ie,let £ = scheme in G(2, V) that parametrizes all dim-2 Q C V
such that (Q® V)N R #0.
H,—/

rank-2 element in P(V ® V)

Pliicker

LR LECG2,V) — P(\*V) =P°

& the map P(A? V) — P(A? V*) is homogeneous of degree 1, so

deg(Lr) = deg(Lr).
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Main Result

Theorem [Chirvasitu, Smith, V]
Let V be a 4-dimensional vector space, R C V® V, where dim(R) =6, & let
ﬂﬁ be the scheme whose reduced variety is
{ReG(2,V): (R® V)NR #0}.
(Note: no hypothesis on T(V)/(R) being regular or having good Hilbert series, etc.)

(a) dim(each irred component of £5) > 1;
(b) {€5:RC V&V, dim(R) =6, dim(£g) =1} is a flat family;

(c) if char(k) #2 & if dim(£r) =1, then deg(£r) =20, where
£r < P(\2V) =5,

The lack of homological hypotheses means the theorem is a result about
6-dimensional subspaces of the space of 4 x 4 matrices.

) 1 .
(And when the algebra is not regular, the schemes £r and £R parametrize the
truncated right line modules of dimension three.)

M. Vancliff ( vancliff@uta.edu ) uta.edu/math /vancliff/R U. T. Arlington 6 /12



Idea of Proof

e Prove (a) and (b), and then use (b) (i.e., flatness) to prove deg(£7)

is a constant for all R that satisfy the hypotheses of the theorem
where dim(£g) = 1;

o then exhibit an example that has deg(£5) = 20.

For the example, we used an algebra | had previously studied with

R. Chandler, but that work assumed char(k) = 0. So we computed the

degree assuming char(k) # 2.

Will now present 3 examples of £g, where T(V)/(R) is regular & char(k) = 0.
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1st Example [Chandler, V]

Let v, i € k*, i?=—1, V=spanofxy,...,xs, & R = span of:

. 2 2 2
X4X1 — IX1 X4, X3 — X1, X3X1 — X1X3 + X5,

. 2 2 2
X3Xp — IX2X3, Xy — X5, X4X2 — XoX4 + VX -

If (2 —4) # 0, then 3| = 20 and can be grouped naturally in P3 into
2 sets of 2 points and 4 sets of 4 points (call latter type generic points).

If (72 — 16) # 0, then £g = union of 6 subschemes in P°:
o 1 nonplanar deg-4 elliptic curve in a P> (i.e., spatial elliptic curve),
@ 4 planar elliptic curves,
@ a subscheme in a P2 consisting of the union of 2 nonsingular conics.

Each of the 16 generic points of 3 lies on 6 distinct lines parametrized by £g
(1 line from each of the above 6 subschemes).
Each of the remaining 4 points lies on infinitely many lines parametrized by £r.
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2nd Example [Derek Tomlin, V]

Let ack, a(a®—-1)#0, V =spanof x;,...,xs, R = span of:

2
X1X3 + X3X1, X2 X3 — X3X2, XoX4 + XgXp — X3,
X1X4 + XgX1, x22 — xf, 2X22 + ax§ — x2.

|3/ = 20 & the points can be grouped naturally in P* into 10 sets of 2 points. J

£ = union of 6 subschemes in P°:
1 nonplanar deg-4 elliptic curve in a P3, (i.e., spatial elliptic curve),

1 nonplanar deg-4 rational curve (with 1 singular point) in a P3,

2 planar elliptic curves,

2 subschemes, each of which consists of the union of a nonsingular conic
and a line (that meets the conic in 2 distinct points).

3 16 points p € 3 such that p lies on 6 lines (ctd with mult) of those
parametrized by Lr (1 line from each of the above 6 subschemes, but some lines
belong to more than 1 family).

Each of the remaining 4 points lies on infinitely many lines parametrized by £g.

v
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3rd Example [Chirvasitu, Smith, Derek Tomlin]

Let i, ap, az € k\ {0, —1, 1}, where a3 + ap + as + ayazaz =0,
V = span of xq,...,xs, R = span of:

XaXj — XiXa — 0 (XjX — XiXj), XaXi + Xixa — oi(XjXx + XkXj),
where (i, j, k) cycles through (1,2, 3).

|3/ = 20 & the points can be grouped naturally in P3 into 6 sets of 2 points and
8 other points.

£r = union of 7 irreducible subschemes in P°:
@ 3 nonplanar deg-4 elliptic curves in a P3, (i.e., spatial elliptic curves Ej, Ey, E3),

@ 4 nonsingular conics.

3 16 points p € 3 such that p € 3 lines, each given by a distinct conic, and
p € 3 other lines, each given by a distinct elliptic curve.
The remaining 4 points p € 3 are such that p € 2 lines given by E;, i = 1,2,3 (6 total).

1st 2 examples are graded skew Clifford algebras, but 3rd does not appear to be
related to a graded skew Clifford algebra.
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Conjectures

Lines Conjecture

One of the generic classes of quadratic AS-regular algebra of gldim 4 has
line scheme that consists of

@ the union of 2 deg-4 spatial elliptic curves & 4 planar elliptic curves

((2)(4) +(4)(3) = 20);
and another generic class has line scheme that consists of

@ the union of 4 deg-4 spatial elliptic curves & 2 nonsingular conics

((#)(4) + (2)(2) = 20).

Points Conjecture

Generic R = a®be Rt iff b@ae RL. J
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Future Work?
Identify more £, perhaps where |3| < 207

Can £r = a union of lines? 20 distinct lines? (even if A not AS-regular)
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Pliicker

Appendix: G(2,V) == P(A* V) = P°
Write V = @?:1 kx;, u= Zj}:l uiXi, w= ZLI wix; € V,

Q=kuekw—uAw=3,_;NjxiAxj € P(\* V) =P®

) up Uy Uz U
& the Nj; are the 2 x 2 minors of 1 2 3 4.
Wi W w3 wy

The 6 N are homogeneous coordinates on P(A? V) = P®.
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