Rewritable Groups

D. S. Passman

University of Wisconsin–Madison

Algebra Extravaganza in Honor of Ellen Kirkman and Martin Lorenz July 2017

We say that group G satisfies PI_n if its group algebra K[G] satisfies a polynomial identity of degree n. Of course, this depends somewhat on the field K.

Kaplansky (1949) observed that if G has an abelian subgroup A of finite index n, then K[G] satisfies the standard identity s_{2n} and hence G satisfies PI_{2n} . We seek a converse of the form: If G satisfies PI_n , then G has an abelian subgroup A of index $\leq f(n)$.

Assume K has characteristic 0. If $n \leq 5$, Amitsur (1961) proved such a result using central polynomials. Only Wagner's polynomial (1937) for 2×2 matrices was known at that time. Then Isaacs and I (1964) proved the general result using the character theory of finite groups.

Characteristic p > 0

Now let K have characteristic p > 0. M. Smith (1971) in her thesis, used certain "linear identities" to obtain strong partial results on the converse. Building on this, and using more group theory, I obtained the following result (1972).

Theorem

Let K be a field of characteristic p > 0 and assume that the group algebra K[G] satisfies a polynomial identity of degree n. Then G has a normal subgroup A of index $\leq a(n)$ such that its commutator subgroup A' is a finite p-group of order $\leq b(n)$.

A group A whose commutator subgroup A' is a finite p-group is said to be p-abelian. The above result actually characterizes groups with IP_n for some n, in characteristic p > 0. Indeed, G is such a group if and only if it has a p-abelian subgroup of finite index.

D. S. Passman (U. W. Madison)

The Permutational Property P_n

Following Curzio, Longobardi, Maj and Robinson (1985), a group G is said to have the permutational property P_n if for all $x_1, x_2, \ldots, x_n \in G$, there exists a nonidentity permutation $\pi \in \text{Sym}_n$ (depending on these elements) with $x_1x_2 \cdots x_n = x_{\pi(1)}x_{\pi(2)} \cdots x_{\pi(n)}$.

Proposition

If G satisfies IP_n for any field K, then it satisfies P_n .

Indeed, suppose K[G] satisfies a polynomial identity of degree n. Then, via linearization, K[G] satisfies a multilinear polynomial f of the form

$$f(\zeta_1, \zeta_2, \dots, \zeta_n) = \sum_{\sigma \in \text{Sym}_n} k_\sigma \zeta_{\sigma(1)} \zeta_{\sigma(2)} \cdots \zeta_{\sigma(n)}$$

with coefficient $0 \neq k_1 \in K$. Now note that $f(x_1, x_2, \ldots, x_n) = 0$, so the identity term in f must be cancelled by suitable $1 \neq \pi$ terms.

The Finite Conjugate Center

Let $\Delta(G)$ be the set of elements of group G having finitely many G-conjugates. This is the F. C. center of G. It is a characteristic subgroup. The result of [CLMR] asserts

Theorem

If G satisfies P_n , then $|G: \Delta(G)| \leq a(n)$ and $\Delta(G)'$ is finite.

The latter is the best they can do because $|\Delta(G)'|$ is not bounded by a function of n. There are even easy finite examples.

Lemma

Let
$$N \subseteq G$$
. If $|G:N| \leq a$ and $|N'| \leq b$ then G satisfies P_{2ab} .

Note that such a subgroup N is in $\Delta(G)$. One should really look for a converse of this and not just with $N = \Delta(G)$.

D. S. Passman (U. W. Madison)

Classes of Bounded Size

It seemed that the old PI techniques could prove this converse, but that the task should be saved for a student. We list some of these methods.

Let $\Delta_k(G)$ be the set of all elements of G having $\leq k$ conjugates. Note that $\Delta_r(G)\Delta_s(G) \subseteq \Delta_{rs}(G)$ and $\Delta_r(G)^{-1} = \Delta_r(G)$. Of course these subsets are not necessarily subgroups. The following was proved by Wiegold (1957).

Theorem

Let G be a group and let k be an integer.

Part (2) above was a conjecture of B. H. Neumann (1954).

Subsets of Finite Index

Since $\Delta_r(G)$ is not a subgroup, one has to deal with subsets of G. We say a subset T of G has index $\leq k$ if there exist group elements x_1, x_2, \ldots, x_k with $\bigcup_{i=1}^{k} Tx_i = G$. Obviously this is not right-left symmetric. Write $T^* = T \cup 1 \cup T^{-1}$.

Lemma

If
$$|G:T| \leq k$$
, then $(T^*)^{4^k}$ is a subgroup of G.

Lemma

Suppose H_1, H_2, \ldots, H_k are subgroups of G and set $S = \bigcup_{i=1}^{k} H_i x_i$.

- If S = G, then $|G: H_i| \le k$ for some *i*.
- ② If $S \neq G$. then there exist g_j for $1 \leq j \leq (k+1)!$ with $\bigcap_j Sg_j = \emptyset$. In particular, if $S \cup T = G$, then $|G:T| \leq (k+1)!$.

Characterization of P_n -Groups

This and some later work is joint with my student Mustafa Elashiry (2011).

Theorem

Let G be a group satisfying the permutational property P_n and set k = n!. Then we have

$$|G:\Delta_k(G)| \le k \cdot (k+1)!, and$$

G has a characteristic subgroup N = ⟨Δ_k⟩ with |G : N| ≤ k·(k+1)!
and with |N'| finite and bounded by a function of n.

The latter bound is big. Set $l = k \cdot (k+1)!$. Then $N = (\Delta_k(G))^{4^l} \subseteq \Delta_m(G)$ where $m = k^{4^l}$. So $N = \Delta_m(N)$ and hence $|N'| \leq (m^4)^{m^4}$.

The Rewritable Property Q_n

Following R. D. Blyth (1988), we say that a group G satisfies the rewritable property Q_n if for all $x_1, x_2, \ldots, x_n \in G$ there exist distinct permutations $\sigma, \tau \in \text{Sym}_n$, depending on these elements, with $x_{\sigma(1)}x_{\sigma(2)}\cdots x_{\sigma(n)} = x_{\tau(1)}x_{\tau(2)}\cdots x_{\tau(n)}$. Obviously

Lemma

If G satisfies P_n , then it satisfies Q_n .

Lemma

If |G'| < n!, then G satisfies Q_n .

Recall, if $|G'| \leq n/2$ then G satisfies P_n . Are these properties the same or just similar?

Examples and Blyth's Theorem

 $G = \text{Sym}_3$ satisfies Q_3 but not P_3 . Q_3 follows from the previous lemma. For P_3 , notice that the product $(123) \cdot (23) \cdot (132) = (12)$ is not equal to any other permuted product. Blyth has a generalization of this with G_n a cyclic group of odd order acted on by a cyclic 2-group. These groups have property Q_n but not P_n for all $n \geq 3$.

Note that the previous lemma implies that $G = \text{Sym}_n$ satisfies Q_n . It does not satisfy Q_{n-1} by considering the (n-1)-fold products of the form $(12) \cdot (13) \cdot (14) \cdots (1n) = (1234 \cdots n)$.

Theorem

If G satisfies Q_n , then $|G: \Delta(G)| \leq a(n)$ and $\Delta(G)'$ is finite.

Obviously this is similar to the P_n result. But the proof is surprisingly much more difficult and uses a really neat trick. Fortunately, Blyth's trick can be merged in with the old PI techniques to yield:

D. S. Passman (U. W. Madison)

Characterization of Q_n -Groups

Theorem

Let G be a group satisfying the rewritable property Q_n . Then there exist functions k, l and m of n with

- $|G: \Delta_k(G)| \le l, and$
- G has a characteristic subgroup $N = \langle \Delta_k \rangle$ with $|G:N| \leq l$ and with $|N'| \leq m$.

Corollary

If G is a group satisfying the rewritable property Q_n , then G satisfies the permutational property P_c for some function c of n.

The bounds here are big. For example, k, l and c are determined via

$$j = n!, \quad p = j^2, \quad q = p \cdot 2^p, \quad k = j \cdot q^p, \quad l = k \cdot (k+1)!, \quad c = 2ml$$