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Polynomial Identities

We say that group G satisfies PIn if its group algebra K[G] satisfies a
polynomial identity of degree n. Of course, this depends somewhat on
the field K.

Kaplansky (1949) observed that if G has an abelian subgroup A of
finite index n, then K[G] satisfies the standard identity s2n and hence
G satisfies PI2n. We seek a converse of the form: If G satisfies PIn,
then G has an abelian subgroup A of index ≤ f(n).

Assume K has characteristic 0. If n ≤ 5, Amitsur (1961) proved such a
result using central polynomials. Only Wagner’s polynomial (1937) for
2× 2 matrices was known at that time. Then Isaacs and I (1964)
proved the general result using the character theory of finite groups.
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Characteristic p > 0

Now let K have characteristic p > 0. M. Smith (1971) in her thesis,
used certain “linear identities” to obtain strong partial results on the
converse. Building on this, and using more group theory, I obtained
the following result (1972).

Theorem

Let K be a field of characteristic p > 0 and assume that the group
algebra K[G] satisfies a polynomial identity of degree n. Then G has a
normal subgroup A of index ≤ a(n) such that its commutator subgroup
A′ is a finite p-group of order ≤ b(n).

A group A whose commutator subgroup A′ is a finite p-group is said to
be p-abelian. The above result actually characterizes groups with IPn
for some n, in characteristic p > 0. Indeed, G is such a group if and
only if it has a p-abelian subgroup of finite index.
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The Permutational Property Pn

Following Curzio, Longobardi, Maj and Robinson (1985), a group G is
said to have the permutational property Pn if for all x1, x2, . . . , xn ∈ G,
there exists a nonidentity permutation π ∈ Symn (depending on these
elements) with x1x2 · · ·xn = xπ(1)xπ(2) · · ·xπ(n).

Proposition

If G satisfies IPn for any field K, then it satisfies Pn.

Indeed, suppose K[G] satisfies a polynomial identity of degree n. Then,
via linearization, K[G] satisfies a multilinear polynomial f of the form

f(ζ1, ζ2, . . . , ζn) =
∑

σ∈Symn

kσζσ(1)ζσ(2) · · · ζσ(n)

with coefficient 0 6= k1 ∈ K. Now note that f(x1, x2, . . . , xn) = 0, so
the identity term in f must be cancelled by suitable 1 6= π terms.
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The Finite Conjugate Center

Let ∆(G) be the set of elements of group G having finitely many
G-conjugates. This is the F. C. center of G. It is a characteristic
subgroup. The result of [CLMR] asserts

Theorem

If G satisfies Pn, then |G : ∆(G)| ≤ a(n) and ∆(G)′ is finite.

The latter is the best they can do because |∆(G)′| is not bounded by a
function of n. There are even easy finite examples.

Lemma

Let N ⊆ G. If |G : N | ≤ a and |N ′| ≤ b then G satisfies P2ab.

Note that such a subgroup N is in ∆(G). One should really look for a
converse of this and not just with N = ∆(G).
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Classes of Bounded Size

It seemed that the old PI techniques could prove this converse, but that
the task should be saved for a student. We list some of these methods.

Let ∆k(G) be the set of all elements of G having ≤ k conjugates. Note
that ∆r(G)∆s(G) ⊆ ∆rs(G) and ∆r(G)−1 = ∆r(G). Of course these
subsets are not necessarily subgroups. The following was proved by
Wiegold (1957).

Theorem

Let G be a group and let k be an integer.

1 If |G′| ≤ k, then G = ∆k(G).

2 If G = ∆k(G), then |G′| ≤ (k4)k
4
.

Part (2) above was a conjecture of B. H. Neumann (1954).
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Subsets of Finite Index

Since ∆r(G) is not a subgroup, one has to deal with subsets of G. We
say a subset T of G has index ≤ k if there exist group elements
x1, x2, . . . , xk with

⋃k
1 Txi = G. Obviously this is not right-left

symmetric. Write T ∗ = T ∪ 1 ∪ T−1.

Lemma

If |G : T | ≤ k, then (T ∗)4
k

is a subgroup of G.

Lemma

Suppose H1, H2, . . . ,Hk are subgroups of G and set S =
⋃k

1Hixi.

1 If S = G, then |G : Hi| ≤ k for some i.

2 If S 6= G. then there exist gj for 1 ≤ j ≤ (k + 1)! with
⋂
j Sgj = ∅.

In particular, if S ∪ T = G, then |G : T | ≤ (k + 1)!.
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Characterization of Pn-Groups

This and some later work is joint with my student Mustafa Elashiry
(2011).

Theorem

Let G be a group satisfying the permutational property Pn and set
k = n!. Then we have

1 |G : ∆k(G)| ≤ k·(k + 1)!, and

2 G has a characteristic subgroup N = 〈∆k〉 with |G : N | ≤ k·(k+ 1)!
and with |N ′| finite and bounded by a function of n.

The latter bound is big. Set l = k·(k + 1)!. Then

N = (∆k(G))4
l ⊆ ∆m(G) where m = k4

l
. So N = ∆m(N) and hence

|N ′| ≤ (m4)m
4
.
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The Rewritable Property Qn

Following R. D. Blyth (1988), we say that a group G satisfies the
rewritable property Qn if for all x1, x2, . . . , xn ∈ G there exist distinct
permutations σ, τ ∈ Symn, depending on these elements, with
xσ(1)xσ(2) · · ·xσ(n) = xτ(1)xτ(2) · · ·xτ(n). Obviously

Lemma

If G satisfies Pn, then it satisfies Qn.

Lemma

If |G′| < n!, then G satisfies Qn.

Recall, if |G′| ≤ n/2 then G satisfies Pn. Are these properties the same
or just similar?
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Examples and Blyth’s Theorem

G = Sym3 satisfies Q3 but not P3. Q3 follows from the previous
lemma. For P3, notice that the product (1 2 3)·(2 3)·(1 3 2) = (1 2) is
not equal to any other permuted product. Blyth has a generalization of
this with Gn a cyclic group of odd order acted on by a cyclic 2-group.
These groups have property Qn but not Pn for all n ≥ 3.

Note that the previous lemma implies that G = Symn satisfies Qn. It
does not satisfy Qn−1 by considering the (n− 1)-fold products of the
form (1 2)·(1 3)·(1 4) · · · (1n) = (1 2 3 4 · · ·n).

Theorem

If G satisfies Qn, then |G : ∆(G)| ≤ a(n) and ∆(G)′ is finite.

Obviously this is similar to the Pn result. But the proof is surprisingly
much more difficult and uses a really neat trick. Fortunately, Blyth’s
trick can be merged in with the old PI techniques to yield:
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Characterization of Qn-Groups

Theorem

Let G be a group satisfying the rewritable property Qn. Then there
exist functions k, l and m of n with

1 |G : ∆k(G)| ≤ l, and

2 G has a characteristic subgroup N = 〈∆k〉 with |G : N | ≤ l and
with |N ′| ≤ m.

Corollary

If G is a group satisfying the rewritable property Qn, then G satisfies
the permutational property Pc for some function c of n.

The bounds here are big. For example, k, l and c are determined via

j = n!, p = j2, q = p·2p, k = j·qp, l = k·(k + 1)!, c = 2ml
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