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ABSTRACT

MEASURE OF PLANES SEPARATING CONVEX BODIES IN THREE

DIMENSIONS

B. Clark Loveridge

DOCTOR OF PHILOSOPHY
Temple University. Januaryv. 2002

Professor Eric Grinberg. Chair

Here we primarily build on the work of R.V. Ambartzumian in the field
of combinatorial integral geometry who in ground-breaking work in the 1970s
developed formulas for computing the measure of planes partitioning a finite
number of points in three-dimensional space. We also secondarily make slight
additions to the work of Ambartzumian and others on computing the measure
of lines partitioning a finite number of points in the plane.

For the three-dimensional case some loose definitions are helpful. We make
use of Ambartzumian’s wedge function. A wedge function on the edge of a
polyhedron is half the length of the edge times the angle between the adjoining
faces. A support plane for a convex body intersects the boundary but not the

interior of the convex bodyv. Given two disjoint closed convex bodies we take
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the envelope to be the portion of the envelope of separating double support
planes bounded by the points of separating double support. We take the caps
to be the nearby portions of the original surfaces bounded by the points of
separating double support.

We show here that the measure of planes separating two disjoint convex
polyhedra in three-dimensional space is equal to the sum of the wedge func-
tions over the envelope minus the sum of the wedge functions over the caps.
Analogously we also show that the measure of planes separating at least cer-
tain pairs of smooth convex bodies in three-dimensional space is equal to the
total absolute mean curvature over the envelope minus the total absolute mean

curvature over the caps.
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CHAPTER 1

INTRODUCTION AND

HISTORICAL BACKGROUND

1.1 Overview

In this paper we develop some formulas for computing measures on lines
and planes with an emphasis on computing the measure of planes separating
two convex bodies in R?. Although formulas already exist for computing mea-
sures of planes we seek to express the measure in terms of geometric invariants
on the bounding surfaces. For example we seek to prove that the measure of
planes separating two smooth convex bodies in R is equal to the integral of
absolute mean curvature over the envelope of separating double tangent planes

minus the integral of absolute mean curvature over the portions of the original
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surfaces bounded by the envelope. This branch of mathematics was dubbed
combinatorial integral geometry by its main recent developer R.V. Ambartzu-

mian to whom we are deeply indebted.

1.2 The Buffon Needle Problem

Although our work builds most directly on the work of R.V. Ambartzumian
from the 1970s, our work has its roots in a problem solved by Buffon in 1776
(Buffon [1776] 1977). Buffon showed that if one randomly throws a needle on
a parquet floor. the probability that the needle hits the crack is

2lvf
wd

where [v| is the length of the needle and d is the distance between the cracks.

Buffon regarded the cracks on the parquet floor as fixed and the placement
of the needle as random but one could equivalently regard the placement of
the needle as fixed and the placement of a grid of parallel lines as random.
Thus the reformulated problem is the probability that a random line hits the
needle which is a measure on the set of lines in the plane.

A desirable property of measures is that they be invariant under rigid mo-
tions. It turns out that Buffon's probability regarded as a measure on lines in
the plane has this property. It has been shown in fact that any motion invari-

ant measure on lines in the plane is a constant muliiple of Buffon's measure.
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The essential factor is the length of the needle. For convenience we take the
measure of lines intersecting the needle to be twice the length of the needle.

See for example Ambartzumian (1990, 47-50, 107. 123-124).

1.3 Barbier, Crofton, and Sylvester

The next wave of development of combinatorial integral geometry came in
the late 1800s. In 1860 Barbier showed that the measure of lines intersecting a
compact convex set is equal to the perimeter of the set (Barbier 1860). In 1868
Crofton showed that the measure of lines separating two compact convex sets
is equal to the length of a taut crossed string enclosing the two sets minus the
length of the perimeters of the sets (Crofton 1868). The taut crossed string
has a linear part which may be referred to as the envelope of separating double
support lines. See Figure 1.1. [n 1890 Sylvester showed that the measures of
lines intersecting either n of n compact convex sets or at least 1 of n compact
convex sets are integer combinations of lengths of taut strings around the sets.

Sylvester did not give a specific formula (Sylvester [1890] 1973).
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Figure 1.1: Circles and the Envelope
1.4 Minkowski and Ambartzumian

In the 1970s R.V. Ambartzumian in ground-breaking work gave specific
formulas for computing measures of lines hitting various combinations of com-
pact convex sets in R?. Building on prior work by Minkowski and others he
also extended some of the results to measures on planes intersecting convex
sets in R? and to higher dimensions (Ambartzumian 1990. 100-126).

In moving from R? to R length is replaced by other geometric invariants.
For example the measure of planes intersecting a smooth compact convex body
in R? is equal to the integral of absolute mean curvature over the boundary.
For polyhedral convex bodies in R® the mean curvature is replaced by what
Ambartzumian referred to as the wedge function. The wedge functiou on an

edge is equal to half the length of the edge times the outer angle of the
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adjoining faces. The measure of planes intersecting a polyhedral compact
convex body in R3 is equal to the total wedge function over the edges.

Both of these results in R® were referred to by Ambartzumian (1990. 114.
122) as classical formulas. The result on the measure of planes intersecting
a smooth convex body in R® was attributed to H. Minkowski by R. Deltheil
(1926. 95).

The main focus of this paper is to extend the results of Minkowski and
Ambartzumian by expressing the measure of planes separating two convex
bodies in R? in terms of mean curvature and wedge functions. We will start
with some basic definitions in the next sections and then give a more detailed

summary of Ambartzumian’s results in the following two chapters.

1.5 Motion Invariant Measures
The following theorems are classical results in integral geometry and will
be a starting point for some of our subsequent results.

Theorem 1.5.1 There is a locally finite measure on the set of lines in the
plane which is invariant under rigid motions and with the property that the
set of lines through a point has measure zero. This measure is unique up to

multiplication by a constant factor.

Proof. See for example Ambartzumian (1990. 47-50).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 1.5.2 There is a locally finite measure on the set of planes in R®
which is invariant under rigid motions and with the property that the set of
planes through a point has measure zero. This measure is unique up to multi-

plication by a constant factor.
Proof. See for example Ambartzumian (1990, 53-55).

Definition 1.5.3 Almost all planes or almost every plane means all planes
ezcept for a set of planes of measure zero. Almost all lines or almost every

line means all lines except for a set of lines of measure zerv.

Theorem 1.5.4 Let (r,y,z) denote a point in R>. Let 0 < ¢ < 7/2. Let
0<0<2r. Let we R. If almost all planes in R® are parametrized by angle
o of the upward normal vector with the z-axis, angle 8 of the angle with the
r-aris of the projection of the upward normal vector onto the ry-plane. and
point of intersection w with the z-axis then the motion invariant measure on
the set of planes is

cos @ sin @ do du df.

For a proof see for example Ambartzumian (1990, 53).

Theorem 1.5.5 Let (z.y, z) denote a point in R3. Let 0 < © < w/2. Let
0< 0 <2r. Let p € R. If almost all planes in R® are parametrized by angle

o of the upward normal vector with the z-azis. angle 6 of the angle with the
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r-azis of the projection of the upward normal vector onto the ry-plane. and
signed distance p from the origin then the motion invariant measure on the set
of planes is

sino do dp d6.

For a proof see for example Ambartzumian (1990. 53).

1.6 The Main Conjecture

Definition 1.6.1 4 convex set in R" is a set which contains uall points on
line segments whose endpoints are in the set. 4 convex body in R" is a
conver set with nonempty interior. A map is C" if it has continuous partial
derivatives of up to order r inclusive. The boundary of a conver body in R*
is smooth if it is C?. A conver hody in R" is strictly convex if there is
a one-to-one correspondence hetween outward normal directions and points on

the houndary.

Definition 1.6.2 A support plane for a conver body A (with interior) in R?
is a plane which intersects the boundary but not the interior of A. If A is

smooth then the set of support planes is exactly the set of tangent planes of A.

Definition 1.6.3 Let A and B be two disjoint closed conver hodies in R>.

An envelope of separating double support planes for A and B is a compact
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connected surface with boundary which intersects A and B at points of sepa-
rating double support. is bounded by the points of separating double support,
and whose support planes are exzactly the separating double support planes of

A and B.

Definition 1.6.4 Let 4 and B be two disjoint closed conver bodies in R®.
The cap of A is the compact connected portion of the boundary of A which
includes a closest point to B and which is bounded by the points of separating

double support. The cap of B is defined analogously.

Definition 1.6.5 Let 4 be a set in R*. If A has an edge then a wedge
function on an edge of A is defined to be half the length of the edge times the

angle of the adjoining fuces.

Conjecture 1.6.6 Let A and B be two disjoint compact convez hodies in R®.
Then the measure of planes separating A and B is equal to the total abso-
lute mean curvature/wedge function over the envelope minus the total absolute

mean curvature/wedge function over the caps.

The condition of compactness may be replaced by a weaker condition assuring
the existence of the envelope. In what follows we do not prove this conjecture
in its most general form but we prove that it is true for polvhedra. pairs of
surfaces whose envelope is a cone. and some other classes of surface pairs whose

envelope is not necessarily a cone.
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We note that for two convex bodies A and B in R? envelopes and caps
may be defined as above but replacing planes with lines. Thus in terms of
envelopes and caps the measure of lines separating two convex bodies in R?
is the length of the envelope minus the length of the caps. Thus the theo-
rem of Crofton referred to in Section 1.3 above may be extended to pairs of

noncompact convex bodies 4 and B in R? provided the envelope exists.

1.7 Differential Geometry, Convexity, and Cal-

culus

Although this paper builds primarily on the work of R.V. Ambartzumian in
the field of combinatorial integral geometry. we use some notions from the fields
of differential geometry. convexity. and calculus. For differential geometry we
found Do Carmo (1976) and Gray (1993) to be helpful. For basic notions in
convexity we found Thompson (1996. 1-11. 45-52) and Gardner (1995. 1-24)to
be particularly helpful.

We also use a version of the implicit function theorem found on page 121
of Abraham, Marsden, and Ratiu (1988) but specialized for our purposes to

two dimensions.
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10

Theorem 1.7.1 Let f(6.¢) : R?> — R be C™ for r > 1. Assume the par-
tial derivative f, is non-vanishing at (6p.0q). Let d = f(fo.®). Then there
is a neighborhood U of Oy and a unique C™ map ¢(6) : U — R such that

f(.w()=d forallf e U.
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CHAPTER 2

MEASURE OF LINES

SEPARATING POINTS IN R?

2.1 Results of Ambartzumian and Others on

Lines in the Plane

Our starting point is some formulas developed by R.V.Ambartzumian for
computing the measure of lines partitioning a finite number of points in R?.
Some of Ambartzumian's results in R? are summarized below and extended

slightly.

Definition 2.1.1 (Ambartzumian 1990. 100) Let P = {P}} denote a finite

set of points in R? such that no 3 of the points are collinear and n > 2. Almost
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12

every line in R? partitions P into two disjoint sets according to which half-
plane the points lie in. The set of lines in R? which form the same partition of
P is called an atom. If neither set of the partition of P is empty the atom is
called a bounded atom. The set of unions of bounded atoms forms a Radon
ring r(P). Line segments P., P, where P,. P; € P are sometimes referred to
as needles for historical reasons. See the description of the Buffon needle

problem in Section 1.2.

Remark 2.1.2 Each line in R? determines two half-planes. Two points P,. P, €
R? may be used to assign a sign to almost all half-planes in a continuous way
as follows. Put a number scale on the line L through P, end P,. Assign a
+ sign to half-planes which contain points of L with arbitrarily large values.
Assign a — sign to half-planes which contain points of L with arbitrarily small

values.

Notation 2.1.3 (Ambartzumian 1990. 100-101) Let P = {P,}} denote a fi-
nite set of points in R? such that no 3 of the points are collinear and n > 2.
Each line segment F‘,_Pj where P,, P; € P may be used to assign an orienta-
tion to lines in neighboring atoms as follows. First arbitrarily assign a + sign
to one of the half-planes determined by the line through H and a — sign
to the other half-plane. Next infinitesimally displace the line. The displaced

line will be in one of four atoms corresponding to the four different ways of
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assigning +/— signs to P; and P;. Denote the displacements of P, and P; as
P/ and Pj respectively. If P is in the positive half-plane determined by the
pair P,. P; then designate the half-plane containing P, determined by the dis-
placed line with a positive sign. Otherwise designate the half-plane containing
P, determined by the displaced line with a negative sign. Ertend the orienta-
tton continuously to the other lines of the atom. Do this for all four bounding
atoms. Let (: . _; ) denote the hounding atom whose positive half-planes contain
both points P; and P; and whose lines otherwise form the same partition of
P as the line through 1_’,—?1 Likewise let (;;) (:;) and (:;) respectively

denote atoms whose designated half-planes contain points P, and P,.

Theorem 2.1.4 (Ambartzwmian 1990. 100-107) Let P = {P,}} denote a fi-
nite set of points in R* such that no 3 of the points are collinear and n > 2.
For each pair P,. P, € P let (:_;) (;;) (:;) and (;;) respectively denote
atoms whose designated half-planes contain points P, and P,. Let Q he an
element of the Radon ring of P. Let Io(A) be an indicator function on atoms

which takes on the value 1 if A C Q and 0 otherwise. Let

L -t Lot - -
c;(Q) = Tgli.J) + Io(i. ) — Iq(i. J) — Ig(i. ).
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Let p;; be the length of the line segment P,P;. Let m(Q) denote the motion
invariant measure on the set of lines in R?. Then

m(Q) = _ cy(Q)py,-

1< j

2.2 A Slight Generalization of Ambartzumian’s

Results on Lines in the Plane

[n order to compute the measure of lines separating polvgouns it is useful to
have a slightly more general formula that allows for the possibility that three

or more points will be collinear.

Definition 2.2.1 Let P = {P,}? denote a finite set of points in R*> where
n > 2 as above but now we allow for the possibility that three or more points are
collinear. Let P, P; € P. Then the pair of points P;, P; is called an allowable
pair if no point of P lies on the interior of the line segment —R_PJ— There are
up to four allowable bounding atoms associated with each allowable pair
P.. P; as follows. The two atoms which separate P, and P, and which otherwise
induce the same partition of P as the line through P; and P, are allowable.
Also the two atoms for which all points collinear with P; and P; are in the
same half-plane and which otheruwise induce the same partition of P as the

line through P; and P; are allowable.
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Theorem 2.2.2 Let P = {P.}} denote a finite set of points in R? for n > 2.
For each allowable pair P,, P, € P let (:j), (:;) (t;) and (:;) respec-
tively denote allowable atoms whose designated half-planes contain points P,
and P;. Let Q) be an element of the Radon ring of P. Let Io(A) be an indicator

function on atoms which takes on the value 1 if A C Q and 0 otherwise. Let
b -t (S - =
cii(Q) = Iq(i-J) + Ig(i. 1) — Iq(i. J) — Iq(i. J)-
Let p;; be the length of the line segment P,P;. Let m(Q) denote the motion
invariant measure on the set of lines in R*. Then

m(Q) =Y c,(Q)pys-

1<)

Proof. We will use induction on the number of points. If the set P contains
only two points then no three points are collinear and the theorem is true by
Theorem 2.1.4. Now suppose that the theorem is true if the set P contains &

points. We want to prove that it is true if the set P contains k& + 1 points.

Case . No three points are collinear. Then the theorem is true by Theorem

2.14.

Case II. P contains a set of at least three collinear points. Without loss of

generality, order three of the points of the collinear set P, P, and P;, assume
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that no points of P are interior to the line segment P, P,, and assume that P;
is not an interior point to any line segment formed by points of P and collinear
with P, P,.

We consider first an atom «, that separates two points of a set of three
or more collinear points. Without loss of generality assume that the atom «,
separates Py and P,. Extend the atom u; to an atom a of P\ P by including
in the new atom lines that either do or do not separate P, and P;. But any
line that separates P, and P, will also separate P, and P;. Thus the original
atom a) of P contains exactly the same set of lines as the new atom u of
P\P;.

By supposition the theorem is true on P\ P;. Thus it will suftice to show
that the coefficient of any line segment which has Py as an endpoint is zero.
But any allowable bounding atom for P; would contain lines which intersect
the line through P, P; arbitrarily close to P;. Such an atom would not separate
P, and P,. Thus the indicator function for such a bounding atom at «; would
be zero. Thus the coefficient of the line segment would be zero.

‘e next consider an atom a; that does not separate any points of a set of
three or more collinear points. Label the points P;. P;. and P as above. Then
a; is also an atom of P\ P,. By supposition the theorem is true on P\ P,. Two
of the bounding atoms in P\P, of P. P; will intersect the line segment and

thus have coefficient zero. The other two will be bounding atoms for P, P,
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and P,, P; in P and thus have the same coefficient in either ring. Thus the

coefficient of u; will be the same in either ring.

Thus the formula gives the correct measure on atoms of P. Therefore the
formula gives the correct measure on an set in the Radon ring of P where P
contains k + 1 points. Therefore by induction on the number of points, the

formula is true for any finite number of points. a

2.3 Examples

Example 2.3.1 Let {D,}} be u set of hounded conver polygonal domains with
disjoint closures in R? with the property that no three vertices are collinear.
The measure of the set K of lines intersecting ezactly k of the polygons for

1<k<nzs

m(K) =Y (= Iw) + Ly (v) (w4l

+ D (Ie(d) = 2L (dy) + Tea(dy)) ||

+ 3 (= (s0) + 2Lei(5) = Lea(s)) |3
where I or I (-) denotes the indicator function on the set of line segments
whose continuation intersects the interiors of exactly k of the polygonal do-
mains, v; represent the original edges of the polygons, d; represent line seg-

ments connecting vertices of two different polygons and whose continuation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

separates the two polygons, and s; represent line segments connecting vertices
of two different polygons and whose continuation is the boundary of a half-plane

containing both of the polygons.

Proof. We will determine coefficients of I on a line segment P.P; by setting
them equal to c;;(K) on the four bounding atoms using the four indicator
formula. Note that if a line through a line segment intersects the interior of a
polygon a small perturbation of the line will still intersect the interior of that
polygon by properties of open sets. Likewise if a line through a line segment
does not intersect the closure of a polygon then a small enough perturbation
of the line will not intersect the closure of a polygon. Thus all four bounding
atoms will intersect the interiors of exactly the same polygons as the line
through the line segment except perhaps those polygons with a vertex that
coincides with an endpoint of the line segment and whose interiors are disjoint
from the line through the line segment.

First consider the coefficient of interior line segment of a polygon. By the
remark above all four of the bounding atoms intersect exactly the same set of
polyhedra. Thus the four indicator functions are either all ones or all zeros.
Thus the coeflicient of /i on a wedge of this type is either 1+ 1—-1—1 or

0+0-0-0=0 for all .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Next consider the coeflicient of an edge of a polygon. The bounding atom
that sends the vertices of the edge to the same half-space as the rest of the
vertices of the polygon will not intersect the interior of the polygon. The other
three bounding atoms will separate at least one of the vertices of the polygon
from the rest of the polvgon. Thus the coefficient of [ will be 04+0—-0~1 = —1
and the coeflicient of [,_; will be 1 +1 —~ 1 — 0 = | on line segments of this
tvpe.

Now consider the coeflicients of line segments whose endpoints are on two
different polygons and whose continuation separates those two polygons. We
will refer to line segments of this tvpe as separating line segments. Note
that the bounding atom which sends each endpoint of the line segment to the
half-plane with the other vertices from the same polvgon intersects neither
of the two polygons. Note also that the bounding atom which sends each
endpoint of the line segment to the opposite half-plane intersects the interior
of both of the polygons. Finally there are two bounding atoms which send
both endpoints to the same half-plane. Such bounding atomus intersect the
interior of exactly one of these two polygons. Thus the coefficient of [ will
be 1 +0—0— 0 = 1. the coefficient of [_, will be 0+ 1 —0 -0 =1 and the
coeflicient of [,_; will be 0 +0 — 1 — | = —2 on line segments of this type.

Finally consider line segments with endpoints on two polygons which send

both of these polygons to the same half-plane. We will refer to these line
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segments as linking line segments. There is one bounding atom that sends
both endpoints of the line segment to the half-plane which contains the other
vertices of the two polygons. Such an atom will intersect neither polygon.
Thus the coefficient of [ on line segments of this typeis0+0—-1-0= —1.
There is one bounding atom that will send both endpoints of the line segment
to the opposite half-plane. Such an atom will intersect the interiors of both
polygons. The other two bounding atoms send exactly one of the endpoints
of the line segment to the same half-plane as the other vertices of the two
polvgons. Such a bounding atom will intersect the interiors of exactly one of
these two polygons. Thus the coefficient of I, will be 0 +0~ 1 — 0 = —1. the
coefficient of [;_, will be 0 + 0 — 0 — 1 = —1. and the coefficient of [_; will
be 1 +1—0-0=2 on line segments of this type.

Thus the types of line segments that will have nonzero coefficients are edges.
separating line segments. and linking line segments. Thus for 1 < k& < n the

measure of the lines hitting exactly k of the n polygons is

3 (L) + Teci(wa) il
+ 37 () — 2061 (ds) + Lea(da)) ||
+ 3 (= Ie(si) + 2Lemr(s3) — Teeals2)) Il

where {1} is the set of line segments on edges. {d;} is the set of separating

line segments, and {s;} is the set of linking line segments. a
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Example 2.3.2 We can extend the formula of Ezample 2.3.1 to the measure
of lines which intersect the conver hull of the set of polygons but none (k =0)
of the polygons if we include only line segments which intersect the interior of

the convez hull in the summations.
Example 2.3.3 If k = n the formula of Ezample 2.3.1 specializes to

PIYCAIAED DY ACAIEHES Py AREN TR

This represents the measure of lines hitting all n of the polygons and agrees
with Ambartzumian’s ezample (1990, 108-111) and is the solution to a problem

posed by Sylvester (1890).

Example 2.3.4 The measure of lines hitting at least one of the polygons may
be obtained by summing the formula of Erample 2.8.1 over k for k = 1...n.

Much cancellation occurs and the result is

2 XA 7__: I,(d) |di] + 2 Lo(s:) || -

This agrees with Ambartzumian’s ezample (1990, 108-111) and is the solution

to a problem posed by Sylvester (1890).

Example 2.3.5 The ezamples above may be extended to replace some or all of
the polygonal domains with line segments with slight modification. Specifically

we define I (v;) to be I if the continuation of v; intersects the interior of
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ezactly k of the original polygons not counting v; itself. Also the sums involving
the original line segments are doubled. For example if all of the polygons in
Erample 2.3.1 are replaced by line segments the formula for the measure of the

set K of planes intersecting exactly k of the line segments for | < k< n is
m(K) =23 (= Ie(w) + () (il

+ 3 U(ds) = 201 () + Le—alds)) ||

+ 3 (= I(s) + 2Lci(3) = Lecals,)) [54] -

Example 2.3.6 Consider two squares shown in Figure 2.1. The first square
has vertices A(0.0). B(0.1). C(-1.1). and D(-1.0). The second square has
vertices £(2.0). F(2.-1). G(3.-1). and H(3.0). Ambartzumian’'s Theorem

2.1.4 and the examples above cannot be applied to these squares because there

to compute the measure of lines separating the two cubes. Side AB is hounded
by a separating atom which puts A and B in the same half-plane. Thus the
coefficient of the length of AB will be —1. Likewise the coefficient of the length
of EF unll be negative. The line segment AE is bounded by a separating atom
that puts A and E in different half-planes. Thus the coefficient of the length
of AE will be +1. Likewise the coefficient of the length of BF will be +1.

None of the other coefficients are hounded by separating atoms. Thus all other
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coefficients are zero. Thus the measure of lines separating the two squares is

AE + BF — AB — EF. This agrees with Crofton’s Theorem (Crofton 1868).

fv)
Q
e Y

"2y
N

4 05 9] 05

— b

'
—
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Figure 2.1: Two Squares
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CHAPTER 3

MEASURE OF PLANES

SEPARATING POINTS IN R°

3.1 Results of Ambartzumian and Others on

Planes in R3

Some of Ambartzumian’s formulas for computing the measure of planes
partitioning a finite number of points in R® are summarized below and ex-

tended slightly.

Definition 3.1.1 (Ambartzumian 1990. 111) Let P = {P.}} denote a finite
set of points in R such that no 3 of the points are collinear and n > 2. Almost

every plane in R® partitions P into two disjoint sets according to which half-
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space the points lie in. A set of planes in R® which form the same partition of
P is called an atom. If neither set of the partition of P is empty the atom is
called a bounded atom. The set of unions of bounded atoms forms a Radon

ring r(P).

Remark 3.1.2 Each plane in R? determines two half-spaces. Two points
P.. P; € R® may be used to assign a sign to almost all half-spaces in a piecewise
continuous way as follows. Put a number scule on the line L through P, and
P;. Assign a + sign to half-spaces which contain points of L with arbitrarily
large values. Assign u — sign to hualf-spaces which contain points of L with

arbitrarily small values.

Definition 3.1.3 (Ambartzumian 1990. 111) Let P = {P,}} denote u finite
set of points in R® such that no 3 of the points are collinear and n > 3. 4
wedge w, consists of a pair (v,. V;) where v, is a line segment whose endpoints
are elements of {P,}} and whose interior points are not elements of { P,}}
and where Vy is an open domain in R containing no elements of {P,}? and
hounded by two planes each of which contain the line segment v, and at least
one additional point sf { P,}T not on the same line as the line segment v,. The
line segment v, is called the needle of the wedge. [n the event that all of the
points of { P;}} are coplanar one has a degenerate wedge consisting of the two

half-spaces determined by the plane containing {P,}7.
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To each wedge w, we associate a set of planes as follows which by abuse of
notation is also refered to as the wedge w,. Let the line |, denote the extension
of the line segment v, associated with the wedge w,. A plane will be considered
to be an element of a wedge w, if it is a subset of V, U l; where V, is the open

domain of R® associated with the wedge w,.

Notation 3.1.4 (Ambartzumian 1990. 112) Let P = {P,}} denote a finite
set of points in R® such that no 3 of the points are collinear and n > 3. Each
wedge associated with a needle ?—P_; where P,, P; € P may be used to assign an
orientation to planes in neighboring atoms as follows. First arbitrarily assign
a + sign to one of the half-spaces determined by a plane of the wedge and a
— sign to the other half-space. Next infinitessimally displace the plane away
from the wedge into a neighboring atom. There are up to four such atoms
corresponding to the four different ways of assigning +/— signs to P, and P,.
Denote the displacements of P; and P, as P; and P] respectively. If P, is in the
positive half-space determined by the pair P,, P; then designate the half-space
containing P, determined by the displaced plane with a positive sign. Otherwise
designate the half-space containing P, determined by the displaced plane with
a negative sign. FErtend the orientation continuously to the other planes of
the atom. Do this for all four bounding atoms. Let (: _; ) denote the bounding

atom whose positive half-spaces contain both points P, and P; and whose planes
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otherwise form the same partition of P as a plane of the wedge. Likewise let
-+ - - -
(i.7), (t J), and (i. j) respectively denote atoms whose designated half-spaces

contain points P; and P;.

Theorem 3.1.5 (Ambartzumian 1990. 112-113) Let P = {P;}} denote a fi-
nite set of points in R® such that no 3 of the points are collinear and n > 3.
For each wedge with needle P,, P; € P let ({f.;), (E,]t), (t;) and (E.;) re-
spectively denote bounding atoms whose designated half-spaces contain points
P, and P;. Let Q be an element of the Radon ring of P. Let Iq(A) be an indi-
cator function on atoms which takes on the value ! if A C Q and 0 otherwnse.

Let
ko -t ot <
eo(@) = Iq(i. J) + Ig(i.J) — Ig(i.J) — Ig(i. 7).
Let |v4| be the length of the needle TPJ Let |V,| be the angle of the wedge. Let

m(Q) denote the motion invariant measure on the set of planes in R®. Then

m(Q) = 3 3 c(@willVil

£
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3.2 A Slight Generalization of Ambartzumian’s

Results on Planes in R3

In order to compute the measure of planes separating polvhedra it is useful
to have a slightly more general formula that allows for the possibility that three

or more points will be collinear.

Definition 3.2.1 Let P = {B}" denote u finite set of points in R* not all
collinear where n > 3 as above but now we allow for the possibility that three
or more points are collinear. Let P,. P, € P. Then the line segment PP, is
called an allowable needle if no point of P lies on the interior of the line
segment. A wedge with an allowable needle is called an allowable wedge.
Given a wedge with an allowable needle _15,—1—’; there are up to four allowable
bounding atoms as follows. The two atoms which separate P, and P, and
which otheruise induce the same partition of P as the wedge are allowable.
Also the two atoms for which all points collinear with P, and P; are in the
same half-space and which otherwise induce the same partition of P as the
wedge are allowable.

A wedge cluster is a set of allowable wedges which share the same open
domain and whose needles are line segments on the same line. Each wedge

of the wedge cluster is called a clustered wedge. 4 solitary wedge is an
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allowable wedge whose needle is not collinear with any points from { P,}} other

than its endpoints.

Theorem 3.2.2 Let P = {P,}? denote a finite set of points in R® not all
collinear for n > 3. For each wedge with an allowable needle TPJ let (E. _; )
(;. ;) (E . J-'). and (;. J-') respectively denote the allowable hounding atoms whose
designated half-spaces contain points P, and P,. Let Q be an element of the
Radon ring of P. Let Ig(A) be an indicator function on atoms which takes on

the value I if A C Q and 0 otherwise. Let
koo -t A -
co(@) = Iqle.J) + Ioli. J) — Igle. J) — Ig(i. j).

Let |v,| be the length of the needle P,P;. Let|V,| be the angle of the wedge. Let

m(Q) denote the motion invariant measure on the set of planes in R®. Then

Q) = 53 c(@lVil

k]
Proof. We will use induction on the number of points. If the set P contains
only three points then no three points are collinear and the theorem is true by
Theorem 3.1.5. Now suppose that the theorem is true if the set P contains k

points. We want to prove that it is true if the set P contains k£ + 1 points.

Case I. No three points are collinear. Then the theorem is true by Theorem

3.1.5.
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Case II. P contains a set of at least three collinear points. Without loss of
generality, order three of the points of the collinear set P, P;, and Ps. assume
that no points of P are interior to the line segment P, P;, and that P; is not
the interior to a line segment with endpoints in P and collinear with P/ P,.

We consider first an atom a, that separates two points of a set of three
or more collinear points. Without loss of generality assume that the atom a,
separates P, and Py. Extend the atom a, to an atom «f of P\ P; by including
in the new atom planes that either do or do not separate P, and P;. But any
plane that separates P, and P, will also separate P, and P;. Thus the original
atom a; of P contains exactly the same set of planes as the new atom a] of
P\P;.

By supposition the theorem is true on P\P;. Thus it will suffice to show
that the coefficient of any wedge which has P; as an endpoint is zero. But
any allowable bounding atom for P3 would contain planes which intersect the
line through P, P, arbitrarily close to P;. Thus any such allowable bounding
atom would not separate P, and P;. Thus the indicator function for such a
bounding atom at @, would be zero. Thus the coefficient of the wedge would
be zero.

We next consider an atom a; that does not separate any points of a set of

three or more collinear points. Let P,, P;, and P; be three such consecutive
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points as above. Then q, is also an atom of P\ P,. By supposition the theorem
is true on P\P,. Given a wedge with needle P\P; in P\P, there are four
possible allowable bounding atoms. Two of these atoms will intersect the

needle and thus have coefficient zero. The other two will be bounding atoms

for PP, and P,P; in P and will have the same coefficient in either ring. Thus

the measure of a, will be the same in either ring. a

3.3 Examples

Example 3.3.1 Let {D,}? he a set of hounded conver polyhedral domains with
disjoint closures in R® with the property that no three vertices are collinear.
The measure of the set K of planes intersecting eractly k of the polyhedra for
I1<k<nis
m(K) =Y (=) + e () o
+ 3 (Deldy) = 2hemy(di) + Leos(dy)) ||

+3 (= I(s2) + 2Leci(5) = Lema(s)) sl

where [ or [ (-) denotes the indicator function on the set of wedges which
intersect the interiors of exactly k of the polyhedral domains. v; represent the
original edges of the polyhedra, d; represent line segments connecting vertices

of two different polyhedra and whose wedges separute the two polyhedra. and
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8; represent line segments connecting vertices of two different polyhedra and

whose wedges send both polyhedra to the same half-space.

Proof. Note that if a plane of a wedge intersects the interior of a polyhedron
a small perturbation of the plane will still intersect the interior of that poly
hedron by properties of open sets. Likewise if a plane of a wedge does not
intersect the closure of a polvhedron then a small enough perturbation of the
plane will not intersect the closure of a polyhedron. Thus all four bounding
atoms will intersect the interiors of exactly the same polvhedra as the planes
of the wedge except perhaps those polyhedra with a vertex of the wedge and
whose interiors are disjoint from planes of the wedge.

First consider the coefficients of inner wedges on the original edges of the
polyhedra. A plane of an inner wedge through a vertex of a polyhedron by
definition intersects the interior of that polvhedron. By Remark 3.1.2 above all
four of the bounding atoms intersect exactly the same set of polyhedra. Thus
the four indicator functions are either all ones or all zeros. Thus the coefficient

of I; on a wedge of this type is either 1 +1-1~10r0+0-0-0=0 for all

Next consider the coefficients of half-inner wedges. that is a wedge with

vertices on two different polyhedra which intersects the interior of one of these

polvhedra say A but not the other one say B. By Remark 3.1.2 above all four
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bounding atoms will intersect the interior of exactly the same set of polyhedra
except perhaps B. Let a; be the vertex at A and let b; be the vertex at B.
An atom which sends «; and b; to the same half-space either will or will not
separate b; from the other vertices of B. Likewise an atom which separates q;
and b; either will or will not separate b; from the other vertices of B. Thus
a coefficient of I, on a wedge of this type will either be 1 + 0 -1 -0 or
0+0-0-0=0 for all j.

Next consider the coefficients of outer wedges on original edges of the poly-
hedra. The bounding atom that sends the vertices of the edge to the same
half-space as the rest of the vertices of the polvhedron will not intersect the
interior of the polyhedron. The other three bounding atoms will separate at
least one of the vertices of the polyhedron from the rest of the polvhedron.
Thus the coeflicient of [, will be 04+0—-0-1 = -1 and the coefficient of [;_,
will be 1 +1 - 1 — 0 = 1 on wedges of this type.

Now cousider the coefficients of wedges whose vertices are on two different
polyhedra and which separate those two polyhedra. We will refer to wedges of
this type as separating wedges. Note that the bounding atom which sends
each vertex of the wedge to the half-space with the other vertices from the
same polyhedron intersects neither of the two polvhedra. Note also that the
bounding atom which sends each vertex of the wedge to the opposite half-space

intersects the interior of both of the polyhedra. Finally there are two bounding
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atoms which send both vertices to the same half-space. Such bounding atoms
intersect the interior of exactly one of these two polyhedra. Thus the coefficient
of [, will be 1 +0 — 0 -0 = 1. the coefficient of [_, will be 0+1-0-0=1.
and the coefficient of I;_; will be 0 + 0 — | — 1 = —2 on wedges of this type.
Finally consider outer wedges with vertices on two polvhedra which send
both of these polyhedra to the same half-space. We will refer to these wedges as
linking wedges. There is one bounding atom that sends both vertices of the
wedge to the half-space which contains the other vertices of the two polyhedra.
Such an atom will intersect neither polvhedron. There is one bounding atom
that will send both vertices of the wedge to the opposite half-space. Such an
atom will intersect the interiors of both polvhedra. The other two bounding
atoms send exactly one of the vertices of the wedge to the same half-space as
the other vertices of the two polvhedra. Such a bounding atom will intersect
the interiors of exactly one of these two polvhedra. Thus the coefficient of I}
will be 0 +0 — 1 — 0 = —1. the coeflicient of [_, willbe 0 +0-0-1 = —1.
and the coefficient of [x_; will be 1 + 1 — 0 — 0 = 2 on wedges of this type.
Thus the tyvpes of wedges that will have nonzero coefficients are outer
wedges on edges. separating wedges, and linking wedges. Thus for 1 < k£ < n

the measure of the planes hitting exactly & of the n polvhedra is

Y () + L () ]
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+ 3 Unlds) = 2Uer(d) + Ler(dh)) |
+ Z (=Ik(s:) + 20e1(8:) — Tk—a(s:)) Isil
where {v;} is the set of wedges on edges. {d,} is the set of separating wedges.

and {s;} is the set of linking wedges. a

Example 3.3.2 We can ectend the formula of Erample 3.3.1 to the measure
of planes which intersect the convex hull of the set of polyhedra but none (k =0)
of the polyhedru if we include only wedges whose needles intersect the interior

of the convez hull in the summations.

Example 3.3.3 If k = n the formula of Example 3.3.1 specializes to
D L)l + Y had) [l + D Laca(s:) Il

This represents the measure of planes hitting all n of the polyhedra.

Example 3.3.4 The measure of planes hitting at least one of the polyhedra
may be obtained by summing the formula of Example 3.3.1 over k fork = 1...n.

Much cancellation occurs and the result is

Y L) lvl =Y L) il + Y Lo(si) [l -

Example 3.3.5 The more general formula of Theorem 3.2.2 can be applied

to parallel cubes of Section 6.2.
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CHAPTER 4

SEPARATING DOUBLE

SUPPORT

4.1 Introduction

In 1869 M.W. Crofton showed that the measure of lines intersecting both
members of a pair of disjoint compact convex bodies in R? is equal to the
length of a taut crossed string enclosing the two bodies minus the perimeters
of the two bodies. His proof seemed to assume the existence and uniqueness
of the string. Another author on the subject who seemed to make the same
assumption was J.J.Sylvester (1890). A search of the literature did not uncover

a proof of the existence and uniqueness of the crossed string.
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The crossed string contains a linear part and a part that follows the bound-
ary of the convex bodies. The linear part of the crossed string consists of
segments of a pair of lines that are support lines to both convex bodies and
which separate the interiors of the two bodies. In this chapter the existence
and uniqueness of this pair of separating double support lines for a pair of
disjoint compact convex bodies in R? will be shown. The results will then be

extended to pairs of disjoint compact convex bodies in R*.

4.2 Containment Half-Planes in R’

Theorem 4.2.1 Let A and B be disjoint compact convez bodies in R%. Let the
z-axis be the line through a shortest line segment connecting A and B. Put a
scale on the :-axis so that 0 and ¢ > () are endpoints of the above line segment.
Without loss of generality assume that A contains the origin and B contains c.
Extend the z-axis to an rz coordinate system with positive orientation. Then
A is contained in the closed half-plane {(r.z) € R? : : < 0} and B s contained

in the closed half-plane {(r.z) € R?: z > c}.

Proof. Let (r). 2;) € B minus the point (0. c).
Case I. Assume that r; > 0 and z; < c¢. Then using basic linear algebra the
equation of the line through (r;.z;) and (0.¢) is z = iL=<r +c. Furthermore

the equation of the line through the origin and perpendicular to the above line
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isz2=-Xr T i L= — - i
is z = ;Z-r. The two lines meet when r = e Thus the z-coordinate

<=2 ‘l

of the intersection will be positive. Call this point of intersection (r,. 2;).
Thus the points (0,c), (1. z1), and (2, z2) are collinear. The point (0, c)
cannot be an interior point on the line segment containing the other two points
since r; and x, are both positive. The point (ir;. 22) also cannot be an interior
point on the line segment containing the other two points. Otherwise the
convexity of B would imply that (r3,22) € B and perpendicularity would
imply that it is closer to the origin than the point (0. c). Furthermore the point
(1, 21) cannot be an interior point on the line segment containing the other
two points. Otherwise the Pythagorean Theorem would imply that (ry.z;) is

closer to the origin than (0.c). Thus case I cannot occur.
Case [I. Assume that ry = 0 and 0 < z; < ¢. Then (ury. 3;) is on the line
segment from the origin to (0. ¢) and thus is closer to the origin than the point

(0.¢) Thus Case II cannot occur.

Case III. Assume that ry =0 and 2; < 0. Then by convexity B contains

the origin and thus intersects A. Thus Case III cannot occur.

Case V. Assume that r; < 0 and z; < ¢. This case cannot occur by an

argument analogous to the argument in Case I.
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Cases [ through IV above exhaust all of the possibilities for zy < ¢ and
none of these cases can happen. Thus z; > ¢. Thus the point (r,, 2;) and all
points of B are in the closed half-plane {(x,z) € R?: z > c}. By a similar

argument 4 is contained in the closed half-plane {(.z) € R?: z < 0}. i

4.3 Signed Distance

Definition 4.3.1 The signed distance between nondegenerate finite collinear
line segments is defined as follows. If the line segments overlap then the dis-
tance is the negative of the length of the intersection. If the line segments are
disjoint then the distance is the length of the shortest line segment connecting
them.

The signed distance can be regarded as a function of the endpoints of the
two line segments. Let A = [a;,ay] with a; < ay and B = [by. by| with by < by

he collinear line segments. Then the signed distance regarded as a map from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

{(ay,a2,b1.50) € R* : a) < a3,b; < b} to R is given by the formula

(

bl -y if ay <u~2$b[ <b-3
61 —uy if oy S b[ S ady S b-z
by—by if 4y <b<by<uy
(432) d(a[.a-_g.bl.bg) = ﬁ
iy - b-_) if b[ < bg <ap <ay

ap—by if b <ap <<

oy —ay if by Sap<ay<by

\

Theorem 4.3.3 Given two collinear line segments A = [uy.ay| with ¢) < ¢y

and B = [by.by| with by < b, the signed distance hetween them is continuous.

A Short Proof. The signed distance is piecewise linear and the formulas agree

on the boundaries. Therefore signed distance is continuous. a

A é-¢ Proof. Let D bhe the domain of the signed distance function.
Thus D = {(a).a3.b,.b3) € R* : a4 < ay. by < ba}.

Let 6; = min (%.915—"*).

Let (a3.14.b3.b4) € R* such that {(a,.az. by. b)) — (aa. ay. b3. by)| < é,.
Then [(ay. a2, by. by) — (a3.a4.b3.b4)| < &

implies |a3 — a;| < 5% and a4 — aa| < B

which implies a3 — a; < B5% and 452 < a4 — ay
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which implies a3 < 2492 and 42 < g,
which implies a3 < a4

Since the formulas are symmetric in ¢ and b then also b3 < bs. Thus
(a3, a4, b3,b4) € D the domain of the distance function and the above for-
mula 4.3.2 for the distance function can be applied replacing subscript 1 with

subscript 3 and replacing subscript 2 with subscript 4 to vield the formula:

(
b3—114 if 113<(14Sb:;<b4

by —ug if a3 <b3<ag<by
by —by if a3 <by<by<uy
(434) (1(113. Ly, b’; bg) = ﬁ
az3—by if by <by<az<auy

g — b4 lf 63 S as S b4 S iy

g —ayg if b3 <ag<ay<by

l
In what follows the above formulas will be used to show that the signed

distance function d is continuous by showing that given an arbitrarv ¢ >
0 there is a 6 > 0 such that |(a).aq, by, ) — (a3, a4.b3,.b4)] < & implies
id(ay.as. by.by) — d(az.aq.b3.b4)| < €.

Because the signed distance function is defined piecewise the proof will be
broken down into cases. Furthermore since the formula for signed distance is
symmetric in a and b one can eliminate some cases by assuming without loss

of generality that a, < b,. Therefore only the first three pieces of the piecewise
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defined function in formula 4.3.4 need be considered. Thus only the following

cases need be considered.

Case I. a; < by and ap < by
Then d(a,. ay. by. by) = by — aa.
Let € > 0. Let 6 = min (,, §, 45%, 25%2).
Let (a3.ay4. b3, b4y) € R* such that [(a;.as.b1.8) — (a3. a4. b3.b4)| < 6.

Then|a3—al|<'-’1~'.'24‘*andlb5—bll<9*;—“l

Thus a3 — a; < 25% and 5% < by — b,

Therefore a3 < 91-{—"1- and “—1{—"1 < by

which implies a3 < b3

Since the formulas are symmetric in a and b then also a4 < by
The two inequalities a3 < b3 and a4 < by together imply that
d(as, a4,b3,b4) = b3 — a4

Thus |d(ua3, a4. 3. by) — d(a). a2.b1. 82)| = [(b3 — aq) — (b1 — a2)|

=|(b3—b)+ (a2 —a4)| S |bs—by| +ag —ay| <26 < ¢

Case II. ap=b;, <az=b
Then d(ay, az,by,b2) = by —ag = b, — by = a; — a3.
Let € > 0. Let 6 = min (4;. 3).

Let ((13, as, b3v 64) € R4 such that l(a17027 bl? b?) - (a3,a4, b37 b«l)l < 8.
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Note that there are four distinct formulas given above for the signed dis-
tance evaluated at (aj3.a4.bs.b4). Each formula will be considered separately

below.

Subcase [la d(a3.u4.b3.b4) = by — ay
Then |d(as. a4, b3, bs) — d(ay.a2.b1.By)| = |(b3 — a4) — (b — a3)]

=i(by = by) + (uz —ag)| S fby — by +az —ag <26 < e

Subcase IIb d(ag. a4.b3.b4) = by — by
Then |d((13.114.b:;. b;t) - (l(ll[.(lg.bl.bg)‘ = I(b:; - b;) - (bl - bg)l

=i(bs —b1) + (by — by)| S b3 —byf +{bo— by <26 < e

Subcase [Ic d(u3. a4. b3.b4) = a3 — by
Then |d(u:;. !14.63. b;) - d(al.a-g. blbg)l = ‘(113 - bg) - (a[ - b;))l

=ug—ay) + (b2 —by)| S ag —ayf+ b — by <20 < ¢

Subcase [Id (l((ls. 04.63. b4) =dg — Uy
Then [d(as. aq. b3. b4) — d(ay. az. by. by)| = [(a3 — a4) — (@) = aa)]

=(az —a1) + (a2 —ag)| <lag —ay| + a2 —ayf <26 <€
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Caselll.a; = b, <ay < by
Then d(a;.ay,b,.by) = by — a3 = a, — ay.
Let € > 0. Let § = min(él,g,ﬂ;—b’»,h_’z—“z).
Let (a3. aq.b3.b;) € R* such that |(a;.ay, b.by) ~ (a3.a4.b3.b4)| < 6.
Then (a1, a2, b1, 82) — (a3, a4, b3, b4)| < &
implies |ay — ay| < 5% and |by — by| < B5%

2

whichimpliesa4—a2<92.‘7“1and‘-'3§"1<b4—b2

which implies a4 < 22 and 22 < b,

which implies a4 < b4

which implies d(a3.a4.b3.by) = by — uq or az — uy

Subcase IIla d(az. a. by, bs) = b5 — a4
Then |d(a3. a4. b3. by) — d(ay. az. b1, b2)| = |(b3 — ay) — (by — a3)]

= (b3 = b1) + (a2 —ay)| S lby = by| +]ar — | <26 <€
Subcase IIIb d(a3. 4. b3. b3) = a3 — a4
Then |d(a3. a4. b3. by) — d(ay. ay. by. ba)| = {(a3 — ay) — (a1 — 1)

=(az—a1)+ (a2 —ay)| <lazg—aj+]ag —aq| <286 < e

Case[V.a1<bl<a2=bg

Then d(alv a2, blv b'Z) = bl —a2 = bl - b'Z-
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Let ¢ > 0. Let § = min (6, §, 25%, a5h).

Let (a3. a4, b3.b4) € R* such that |(a;. a3, by, b2) — (a3. a4, b3.b4)| < 6.
Then |(ay,ay, by, b2) — (a3, a4, b3,b4)| < 6

implies (a3 — g < 9%‘-‘1 and |bs — | < '—’*;—“L

whichimpliesag—a1<h§‘-‘*andﬂ;—"1<b3—bl

which implies a3 < “".;"’ and “‘.}Lb‘ < by

which implies a3 < b3

which implies d(ag3, ay4. b3, b4) = b3 — a4 or b3 — b4

Subcase [Va d(a3, a4, b3,b4) = by — a4
Then |d(a3. a4.b3. b3) — d(ay.az.b.8)| = {(bs — a4) — (by — a3)|

= |(by— b)) + (a2 — 1a)| < [by = by| + |ag —a4] <26 < €

Subcase [Vb d(a3. a4. b3.b4) = b3 — b4
Then |d(a3, as, bs. by) — d{ay. a. by. by)| = |(bs — b4) — (by — b3)]

=[(ba —b1) + (b2 —ba)| < b3 —by| + by — bs| <20 < €

CaseV.a‘=61<b2<a2
Then d(alya%blvb?) = bl —62 =a; — b?-
Let € > 0. Let § = min (61.3,93?4.91;—"1).

Let ((13,04,b3, bq) € R such that ,(al,ag,bl,bz) - (03, a4, b3, b4)| < 4.
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Then I(alva'.!v blv b2) - (aSva‘h bSv b4)l < 6

implies by — bo| < %522 and [ay — ap| < 252

which implies by — b < “’;"’ and "";“" < ugq — dy

which implies b, < %+ 5 and ““._f"" < uy
which implies by < a4

which implies d(uy. a4, by. by) = a3 — by or by — by

Subcase Va (1((13. ag. b:;. b4) =da3z — b4
Then id(ll:;.d.].bg.b‘;) b Ll(ll[.!l-_).bl.b‘z)l = i(ﬁg - b;) - ((11 - b'_))l

= ](a:; - al) + (bg - bg)l < {a;; - (11l + !b-g - bg[ <2 <e¢

Subcase Vb cl(a;;. ay. b3. b;) = b3 - b_,‘
Then 'd(ll:;. !14.b3. b;) - d((ll.fb_). blb'.’)l = {(b‘; - b;) - (b[ - b-_))l

=[(bg = b))+ (by —by)| S {b3 —by| + by — by <W < e

Case VL. q; < b; < by < ay

Then d(al.ag,bl,bg) = bl - b-z.

Let € > 0. Let § = min (6;. 5. lu;ul_ bn;bl. m;bq).
Let (037 a4.b3, 64) € R?* such that l(al-(12~, bl~b2) —_ (03,04, b:{’ b4)l <.
Then |(a1.ag.bl.b2) — (113.a4,b3,b4)l < §

implies [a3 — a;| < Y52 and [b3 — b < 252
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whichimpliesa;,—a1<'-’l'2'—“*andﬂ§9-'~<b;;—bl

which implies a3 < 242 and 242 < by
which implies a3 < b3
Also [(a1.a2.by.8y) — (a3.a4.b3.b4)| < 6
[bg — ba| < g’;‘;‘aaﬂd lag — aa| < 9%?‘
which implies by — by < @and 92—,'5-‘52<a4—a2
which implies b4 < ﬂfﬁ and 92;—”2 < a4
which implies b; < a4
The two inequalities a3 < b3 and b4 < a4 together imply that
d(ag.ay.b3.b4) = b3 — by
Thus |d(as, a4, b3, b4) — d(ay. a3, by. )| = |(bs — bg) — (&) — &)|

=|(bs—b1)+ (b — b)) S b3 —bi| +bp — byl <2 <

The first piece of the piecewise function defined in formula 4.3.2 is covered
by Case I. The second piece is covered by Cases I. II. III. and IV. The third
piece is covered by Cases II. IV. V. and VI. The last three pieces are covered
by the symmetry of the formula in ¢ and b. Thus the six cases mentioned

above are exhaustive.
Thus in each case given an arbitrary ¢ > 0 one can find a § > 0 such that
](al. as, bl. bz)—(a:;. agy. b:;. b4)| <é imphes ‘d(a[, as. bl. b-z)—d(ag. as. 63 b4)| <e.

Therefore the signed distance function d is continuous. a
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4.4 Separation Function

Definition 4.4.1 Let A and B be disjoint compact convez sets in R?. Let the
z-axis be the line through a shortest line segment connecting A and B. Put a
scale on the z-axis so that 0 and ¢ > 0 are endpoints of the above line segment.
Ezxtend the z-azxis to an rz coordinate system with positive orientation. Let
¢ € R. Let L(¢) be a rotation of the z-axis by angle ¢. Then the separation
function of (A. B. @) is the signed distance between the orthogonal projections

of A and B onto L(0).

Lemma 4.4.2 Let A and B be disjoint compact convez bodies in R%. Let the
z-aris be the line through a shortest line segment connecting A and B. Put a
scale on the z-azis so that 0 and ¢ > 0 are endpoints of the above line segment.
Extend the 2-axis to an rz coordinate system with positive orientation. Let
O.09 € R. Let L(p) be a rotation of the z-axis by angle 0. Let Agc be a
rectangle circumscribing A with two sides perpendicular to L(pg). Let Boc be
a rectangle circumscribing B with two sides perpendicular to L(@o). Then the

separation function of (Aoc. Boc. @) is a continuous function of © at ¢g.

Proof. Without loss of generality assume that ¢ > 0 corresponds to a clock-
wise rotation of the z-axis. Write the separation function fc = foc(¢) as a
composition of functions as follows. Order the vertices of Agc and Byc so that

the first four vertices are vertices of Ay in dictionary order and so that the last
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four vertices are vertices of Bgc in the dictionary order. Let fi(¢) : R — R®
be defined as the ordered orthogonal projections of the vertices of Ao and
By onto L(p). Let f, : R® — R* be defined by fa(ay.ay. 03.14.by.b5.b3.by) =
(min(a;), mar(a,), min(b;), max(b;)). Let f3 : R* — R be defined as the signed
distance between the line segment determined by the first two coordinates and
the line segment determined by the second two coordinates.

f1 is equivalent to rotating the vertices of Ag- and By by angle o where
@ > 0 corresponds to a counterclockwise rotation and then projecting orthog-
onally onto the z-axis. Thus for i = 1.--- .8 the ith component of fi (o) is
fii(@) = r;sin@ + 2 cos @ where (r;. z) is the ith ordered vertex of the pair
(Aoc, Boc). Thus f,(9) is continuous in ¢ since it is a linear combination of
continuous functions. Therefore f, is continuous in © since its components are.

Next to prove the continuity of f, consider first the first component. renum-
ber the input if necessary so that a) < 1y < a3 < uy. let a denote (a;. ay. a3. uy).

and consider the following cases.

Case I. ¢ < a3 < a3 < a4. Then fy(a) = a;. Let € > 0. Let § =
min(945%, 435% ¢). Let a = (a;.a».a3.4) be such that ¢ — af < 4. Then
Qy— Q) = (042—-:12)+(a2—ai)+(a1—a1) > —6+26+6 = 0 which implies that

a; < ay. By a similar arguments a; < a3 and a; < o4. Thus for |u — a| <
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S, far(a) = ay. Thus for |a — a] < §,|fa(a) — fa(a)] = oy —a] <6 < e

Thus the first component of f, is continuous at a.

Case II. a; = a3 < a3 < uyg. Then fy1(a) = a; = ay. Let € > 0. Let
§ = min(%5%2, 454 ¢). Let o = (a1, ay, a3, a4) be such that |a — o < 6.
Then a3 -a, = (a3 ~a3)+ (a3 —a;) + (a1 —a;) > =6+ 26+ 6 = 0 which implies
that a; < a3 for ¢ = 1, 2. By a similar argument a; < a4 for i = 1,2. Thus for
la — a| < 6. fa(a) = either a; or a,. Thus for ja — a| < 8.|fa(a) — fala)l =
either |a) — a1| < 6 < € or|ay — ay| < 8 < e. Thus the first component of f,

is continuous at a.

Case III. ¢y = a3 < azg = u4. Then fy;(a) = a4y = ay. Let € > 0. Let
0 = min(%5% . ¢). Let a = (a;.a2.a3.a4) be such that ju — af < §. Then
ai —o; = (a; — &) + (¢i — a5) + (a; — a;) > =8 + 26 + § = 0 which implies
that a; < a; for j = 1.2 and ¢ = 3.4. Thus for (¢ — a| < &. foy(a) = either
ay or ay. Thus for |a — a| < é.[fa(a) — fo1(a)| = either ja; — ay] < § < € or

ay — ay| < § < €. Thus the first component of f; is continuous at a.

Case IV. ) < up < a3 = uq. Then fy(a) = a;. Let € > 0. Let § =

min(R5%2 234 ¢). Let a = (a;.a3.a3.04) be such that ja — a| < . Then

a; — o) = (0 — a;) + (& —ar) + (ay — @) > —8 + 26 — § = 0 which implies
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that a; < o; for i = 2,3,4. Thus for |a — a| < §, fo1(a) = @;. Thus for
la —a| <6,|far(a) = fa(a)] = |a; —ai| < § < e. Thus the first component of

f2 is continuous at a.

The above cases are exhaustive. Thus the first component of f, is con-
tinuous at a and therefore continuous. By a similar arguments the other
components of f, are continuous. Therefore f; is continuous. f3 is continuous
by Theorem 4.3.3. Therefore fc is continuous since it is a composition of con-

tinuous functions. a

Lemma 4.4.3 Let A and B be disjoint compact conver bodies in R?. Let the
2-axis he the line through a shortest line segment connecting A and B. Put a
scale on the z-aris so that 0 and ¢ > 0 are endpoints of the above line segment.
Extend the z-aris to an rz coordinate system with positive orientation. Let
&.09 € R. Let L(®) he a rotation of the z-axis by angle ¢. Let Agc be a
rectangle circumscribing A unth two sides perpendicular to L(@g). Let Boc be
a rectangle circumscribing B with two sides perpendicular to L(pg). Let Ags
be a line segment inscribed in A with endpoints on opposite sides of Agc such
that these opposite sides are perpendicular to L(¢g). Let Bor be a line segment

inscribed in B with endpoints on opposite sides of Boc such that these opposite
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sides are perpendicular to L(¢g). Then the separation function of (Ag;. Bos. @)

is a continuous function of ¢ at ¢y.

Proof. Without loss of generality assume that © > 0 corresponds to a clock-
wise rotation of the z-axis. Write the separation function f; = fo;(®) as a
composition of functions as follows. Order the endpoints of Ag; and By, so
that the first two endpoints are endpoints of Ag; in dictionary order and so
that the last two endpoints are endpoints of By, in the dictionaryv order. Let
fi(o) : R — R be defined as the ordered orthogonal projections of the end-
points of Ag; and Bor onto L{p). Let f3: R* — R be defined as the signed
distance between the line segment determined by the first two coordinates and
the line segment determined by the second two coordinates. Therefore f; is

continuous since it is a composition of continuous functions. a

Lemma 4.4.4 Let 4 and B be disjoint compact conver hodies in R?. Let the
z-axis be the line through a shortest line segment connecting A and B. Put a
scale on the z-aris so that 0 and ¢ > 0 are endpoints of the above line segment.
Extend the z-azis to an rz coordinate system with positive orientation. Let
0.00 € R. Let L(0) be a rotation of the z-axis by angle ©. Let Aoc be a
rectangle circumscribing A with two sides perpendicular to L(og). Let Boc
be a rectangle circumscribing B with two sides perpendicular to L(og). Let

Aor be a line segment inscribed in A with endpoints on opposite sides of Agc
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such that these opposite sides are perpendicular to L(@g). Let Bo; be a line
segment inscribed in B with endpoints on opposite sides of Byc such that these
opposite sides are perpendicular to L(¢g). Let f = f(@) denote the separation
function of A and B. Let fc = foc(@) denote the separation function of Agc
and Boc. Let f; = fo;(@) denote the separation function of Ag; and Bo;. Then

fe<f< fr

Proof. Since the projections of convex sets are convex. the images of the pro-
jections of convex sets onto a line will be (possibly degenerate) line segments.

Thus one can coordinatize the images of the projections as follows.

.

ProjAer = [an(®).an(0)) = [an.ap]
ProjA = [ai(¢).a2(0)] = [a1.as]
Projdec = [aci(d).ac2(0)] = [aci. uca)
Let <
ProjBg; = [bn(d’)' bm((D)] = [b“' bl?]
ProjB = [bi(9).b2(0)] = [br. by
‘ ProjBoc = [bci(®).bc2(9)] =  [ber. bea

Applying the separation function formulas to f;. f. and f respectively then
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gives:
b —ap if an <ap <by <bp
by —app if an <by<ap<bp
by —brg if ap <bp <bpp<ap
(4.4.5) fr= T

arp —=bp f by <bp<an <Lap

any = by if bn <ap <bp Lap

an —ap if bn<an<ap<bp

by—ay if 0y <ay<b<h
bl—wz if algblsaggb)
(4.46) fo bi—by if o, < <b <Ly
ay—by f hi<b<a <a

ap—by if h<ay<bh<a

ay—ap if h<a<ar<h

bey —ace if aci Lace L ber € ber
ber —ace if acy Lber L ace € b
bor —bee i act Lber L be2 € ac
(44.7) fo=1
aci —becz if ber S ber L ac € ac

act —bcz if bci Lacit Lber € ac

aci —ace if ber <aci <ace € b2
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Also note that Ag; € A C Agc and By; C B C Bye.

Thus Proj Ao; € Proj A C Proj Aoc and Proj By, C Proj B C Proj Bgc-

Thus
(4.4.8) acy Say Sapyp Sap <ax <ae
(4.4.9) by by < by < by < by < e

Formulas 4.4.5. 4.4.6. 4.4.7. 4.4.8. and 4.4.9 above can then be applied to each

of the cases below.

Case Ly <uy <b < by
Then apy < apy < bp < bpy
Thus f =b[ -y < b“ -y = f[

Also

by — ey < by — iy = f
or bor—bea<b—by<b-ur=f

or acy —bea <y —by<by—ay=f

or acy —aca <y - <bh—uy=f
\

Thus for Case I. f- < f < f;
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C&S&II.G[Sb[SCQSb?

Then )
bpp—up2b—ay=f
or by —bp2by—ap>2b—a=f
fr=4
or an —bp>2bh—anp2b —a=f
or an —ap2by—ap>2b —ay=f
\
Also )
boy —acy Kby —up=f
or boy=bea<by—by<b—ar=f
fc‘=<

or dcp—bea <y —by<b-—a=f

or acy—acySar—ay<b—ay=f

\

Thus for Case IL. fo < f < f;

CaseIIl. u; < by < by < ay
Then

bn-—ap2bn-bp=2b-b=f
or b —bpp>2by—by=f

fr=4

or dpn—bp2by-bp2b-b="f

{ ofr ap —dpp 2 by ~bp>2b—-by=f
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ber—aco <b—ay<b—-b=f
or bey —bca <b—-bp=f

or acy—bea<a—-bp<bh-b=f

or acy—aca<ay—ap <b—by=f
\

Thus for Case III. foc < f < fr

Case [V. b < by <ay L ay
The argument is similar to the argument for Case I but switch the roles of «

and b.
CaseV.blsalgngag
The argument is similar to the argument for Case II but switch the roles of a
and b.
Case V. by < g1 <an < by
The argument is similar to the argument for Case III but switch the roles of

a and b.

The above six cases are exhaustive. Therefore fc < f < f. a
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Theorem 4.4.10 Let A and B be disjoint compact conver bodies in R? with
positive area. Let the z-axis be the line through a shortest line segment con-
necting A and B. Put a scale on the z-azxis so that 0 and ¢ > 0 are endpoints
of the above line segment. Extend the z-axis to an rz coordinate system with
positive orientation. Let o € R. Let L(o) be a rotation of the z-axis by angle

¢. Then the separution function of (A. B. @) is a continuous function of ¢.

Proof. Without loss of generality assume that @ > 0 corresponds to a clockwise
rotation. Let gp € R. Let Ay be a rectangle circumscribing 4 with two sides
perpendicular to L(og). Let Bgc be a rectangle circumscribing B with two
sides perpendicular to L(ag). Let f- = foc(0) denote the separation function
of Agc and Bye. Let Ay, be a line segment inscribed in A with endpoints
on opposite sides of Ay such that these opposite sides are perpendicular to
L(og). Let By be a line segment inscribed in B with endpoints on opposite
sides of By such that these opposite sides are perpendicular to L(og). Let
f1 = for{©) denote the separation function of Ag; and By;. Let € > 0. Then
using lemmas 4.4.2. 4.4.3. and 4.4.4 there is § > 0 such that |0 — 0] < 6
implies
f(0) = f(o) = f(0) = for(oo) < for(®) — for(oo) < €

and f(¢o) — f(®) = foc(9o) — f(®) < foc(®o) = foc(®) < €.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thus |f(¢o) — f(¢)| < €. Thus f is continuous at ¢y. Thus f is continuous at

@. a

4.5 Examples of Separation Functions

Using elementary trigonometry the separation function is computed for

some simple examples below.

Example 4.5.1 Let A be a circle of radius r centered at (0. —r). Let B be a

circle of radius r centered at (0.c + r). Then the separation function
f(A,B.¢) = (c+2r)|cos¢| — 2r

Example 4.5.2 Let A be a square centered at (0. —s/2) whose sides are par-
allel to the azes and have length s. Let B be a square centered at (0.c + 5/2)
whose sides are parallel to the azes and have length s. Then the separation

function

ccos@+ssing if -7/2<0<0
f(A.B.o) =
ccoso+ssing if 0<o<n/2
Example 4.5.3 Let A be a square centered at (s/2.—s/2) whose sides are

parullel to the azes and have length s. Let B be a square centered at (—s/2.c+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

3/2) whose sides are parallel to the axes and have length s. Then the separation
function
ccosop if -7w/2<¢p<0

f(A.B.o) = ccosg — 2ssing if 0< o< tan~l(2E2)

L —(c+2s)cosgcoso iftan'(E2) < o < 7/2

4.6 Separating Double Support Lines in R>

Lemma 4.6.1 Let A and B be disjoint compact convez bodies in R* with pos-
itive area. Let the z-axis be the line through a shortest line segment connecting
.1 and B. Put a scale on the z-uxis so that O and ¢ > 0 are endpoints of the
above line segment. Ertend the z-azis to an rz coordinate system with positive
orientation. Then there is at least one separating double support line whose
upward normal vector makes an angle ¢, clockwise from the z-axis such that
0 < &1 < m/2 and at least one additional distinct separating double suppott
line whose upward normal vector makes an angle oy counterclockwise from the

z-axis such that 0 < ¢ < /2.

Proof. Orthogonally project A and B onto the r-axis. Since A and B are
convex then their projections will be line segments. Since the z-axis projects
to the origin and intersects both A and B then the signed distance between

the projections of A and B will be less than or equal to zero.
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Now orthogonally project A and B onto the z-axis. Then the signed dis-
tance between the projections will be ¢ > 0 by Theorem 4.2.1.

Now orthogonally project A and B onto a line L(¢) making angle ¢ clock-
wise with the positive z-axis where 0 < ¢ < /2. Then the signed distance
between the projections of 4 and B is a continuous function of ¢ by Theorem
4.4.10.

Thus since the signed distance between the projections of 4 and B is a
continuous function of ¢ which is positive when o = 0 and nonpositive when
o = 7/2 then the Intermediate Value Theorem implies that this distance is 0
for sorse value of @ such that 0 < ¢ < /2. Thus there is at least one value o,
of o for which the signed distance is zero and for this value the projections of 4
and B orthogonal to L(¢,) meet at a point. Thus the line through that point
perpendicular to L(o;) is a separating double support line and its upward
normal vector is parallel to L(o,) which makes a clockwise angle o, with the
z-axis where 0 < oy < 7/2.

By a similar argument there is at least one separating double support line
whose upward normal vector makes counterclockwise angle ¢y with the z-axis
where 0 < 0 < 7/2.

To show that at least two of the lines whose existence was shown above are

distinct consider the following two cases.
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Case . The separation function at (A, B, 7/2) is negative.

Then the two lines whose existence was shown above are distinct.

Case II. The separation function at (A. B.7/2) is 0.
Then the z-axis is a separating double support line. Thus the r-coordinates
of the interior points of A all have the same sign. If the interior points of A
all have negative r-coordinates then the image of the reflection of A about the
z-axis will have positive r-coordinates. Thus without loss of generality one
can assume that the interior of points of A have positive r-coordinates and
that the interior points of B have negative r-coordinates. Thus the interior of
A is contained in Quadrant IV and the interior of B is contained in Quadrant
IL

Now let ¢; = w/2. Then the coordinates of Ag; may be labeled (r». z;)
and (0. z,) and the coordinates of By; may be labeled (0. z3) and (.r;. z4) where
r <0< uryand 23 €0 < ¢ < z3. Let Proj(r. 2)(0) denote the orthogonal
projection of the point (r. z) onto a clockwise rotation of the z-axis by angle
Q.

Let g1(¢) =Proj(0. z;)(0)—Proj(x,. 24)(¢) = zicos o — ry sino — z4 cos o for
i =2.3. Then g; is a continuous function of ¢ since it is a linear combination
of continuous functions. Furthermore g,(7/2) = —r; > 0. Thus there is a

6 > 0 such that (¢ — /2| < é implies g;(7/2) > 0. Thus for [¢ — 7/2| < 4.
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Proj(0, z;)(¢)—Proj(z1, 24)(¢) > 0 which implies Proj(zy, 24)(¢) <Proj(0, z:)(¢)
for i =2.3.

Now let go(@) =Proj(xa, 2,)(¢)—Proj(0, z;)(¢) = rysin @+ z; cos ©— z; cos @
for { = 2,3. Then g, is a continuous function of ¢ since it is a linear combi-
nation of continuous functions. Furthermore go(7/2) = ry > 0. Thus there is
a § > 0 such that |¢ — /2| < & implies go(7/2) > 0. Thus for [¢ — 7/2| < 4.
Proj(x3. 2;)(6)—Proj(0. z;)(¢) > 0 which implies Proj(0. z;)(0) <Proj(rs, z;1)(®)
fori =2.3.

Combining with the previous result then yields Proj(r,. z4)(#) < Proj(0. z;)(o)
< Proj(xy, 2)(®) for i = 2.3. Therefore for 1/2 -6 < ¢ < /2. for(¢) = (22 -
z3)cos¢. Thus for 7/2 — 6 < 0 < 7/2. f(9) < for(®) = (22 — 23) cos(d) < 0.
Thus f(7r/2—6) < 0 < ¢ = f(0). Therefore since f is continuous by Theorem
4.4.10, then by the intermediate value theorem f(¢) = 0 for some value ¢, of
© between 0 and 7/2 — 6. Thus L(g,) is parallel to a second distinct upward

normal vector to a separating double support line.

The two cases are exhaustive. o

Lemma 4.6.2 Let A and B be disjoint compact convez bodies in R* with pos-
itive area. Let the z-axis be the line through a shortest line segment connecting

A and B. Put a scale on the z-azxis so that 0 and ¢ > 0 are endpoints of the
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above line segment. Extend the z-axis to an rz coordinate system with positive
orientation. Suppose there are at least two distinct separating double support

lines L, and L,. Then L, and L, meet in a point.

Proof. Let L, and L, be two separating double support lines for 4 and B.
Project R? onto a line orthogonal to L;. Then A and B project to line segments
and L, projects to the shared endpoint p of the two line segments and separates
the interiors of the two line segments. Since L, is distinct from L, its projection
will not be the single point p. Furthermore since L, supports both 4 and B its
projection must include points from both line segments. Thus the projection
of L, is not a single point. Thus L, is not parallel to L,. Thus L, and L,

meet in a point. a

Theorem 4.6.3 Let A and B be disjoint compact conver bodies in R* with
positive area. Let the z-acis be the line through a shortest line segment con-
necting A and B. Put a scale on the z-azis so that 0 and ¢ > 0 are endpoints
of the above line segment. Ertend the z-axis to an rz coordinate system with
posttive orientation. Then there are ezactly two separating double support lines
at least one of which has an upward normal vector making an angle o clockuise
from the z-azis such that 0 < ¢ < 7 /2 and at least one of which has an upward
normal vector making an angle © counterclockwise from the z-axis such that

O<op<m/2
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Proof. Existence was proven above in Lemma 4.6.1. Suppose there are three
separating double support lines L. L,, and L3. For i = 1.2.3 let H4; denote
the closed half-plane determined by L; and containing A. By Lemma 4.6.2

above L, and L, intersect in a point p.

Case . p ¢ Lj.
Then p is in the interior of one of the two half-planes determined by Lj.
Without loss of generality assume that p is in the interior of H43. Let a, €
L,N A and let ay € Ly N A. Then the rays pa; and pay form the boundary of
Hy NH,s. Thus A is contained in H4, N H 4, which is contained in the interior
of H 3. Therefore L3 does not intersect A. Therefore Lj is not a support line

for A. This is a contradiction. Thus Case I cannot occur.

Case Il. p € L;.
Since A and B are disjoint p is not in both. Without loss of generality assume
pg A. Let ay € Ly N A and let ay € L, N A. Then the ravs pa, and pa, form
the boundary of H4, N H4;. Thus A is contained in Hy N H4y\p which is
contained in the interior of H 43. Therefore L3 does not intersect A. Therefore
L3 is not a support line for A. This is a contradiction. Thus Case II cannot

occur.
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Thus Cases I and II are exhaustive and neither case can occur. Thus there

are exactly two separating double support lines. This proves the theorem. O

Corollary 4.6.4 Let A and B be disjoint compact convez bodies in R%. Then
the points of separating double support on A partition the rest of the boundary
of A into two disjoint continuous parts depending on whether the separation
function is positive or negative. The closure of the portion of the boundary
of A where the separation function is positive is the cap of A. An analogous

statement may be made regarding the cap of B.

Remark 4.6.5 The statements of the theorems of this section and the next
are made a bit cumbersome by the fact that it is not necessarily true that for
rotation angle ¢ between zero and w/2 there is ezactly one separating double
support line corresponding to a clockwise rotation and exactly one separating
double support line corresponding to a counterclockwise rotation. The difficulty
is that the line through a shortest line segment between the two bodies may
also be a separating double support line. In that case the normal vector to
this support line would make an angle of ezxactly w/2 with the z-azxis in either
the clockwise or counter clockuise direction and there would be ezactly one
additional separating double support line. For a specific example see Figure

2.1 of Chapter 2.
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4.7 Separating Double Support Planes in R3

Theorem 4.7.1 Let A and B bhe disjoint compact conver bodies in R3. Let
the z-axis be the line through a shortest line segment connecting A and B.
Put a scale on the :-aris so thuat 0 and ¢ > 0 are endpoints of the above
line segment. FErtend the z-axis to an ryz coordinate system with positive
orientation. Parametrize almost all planes in R® by angle 8 of rotation about
the z-aris of the projection of the upward normal vector onto the ry-plane
where 0 < 0 < 27, angle © of the normal vector with the z-axris where 0 <
0 < 7/2. and by the intersection z of the plane with the z-uris where —x <
: < x. Ertend the (8.0) coordinates hut not the : coordinates nonuniquely
to planes parallel to the z-aris. Thus the range of the ertended o-coordinates
is 0 < @ < /2. Then there is at least one and at most two separating double
support planes for each angle 8. Furthermore. if there are two such planes for
a given angle 0 then one of the planes has ¢-coordinate /2 and there are no

additional such planes for angle (0 + ) mod 2x.

Proof: Fix §. Let a = (sinocosf.sin osin f. cos 0). Project R® onto the plane
containing a (for all values of ¢) and the z-axis. The projections of A and
B are convex bodies in R2. The separating double support planes which are
normal to a project to separating double support lines and vice versa. Thus

by Theorem 4.6.3 there is at least one and at most two separating double
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support planes for each angle 6. Furthermore, if there are two such planes for
a given angle 6 then one of the planes has ¢-coordinate /2 and there are no

additional such planes for angle (6 + 7) mod 2. a

Corollary 4.7.2 There is a one-to-one correspondence hetween separating dou-

ble support planes and the angle 8 for 0 < 6 < 2x.

In later chapters it will be useful to extend the notion of separation function

to pairs of convex bodies in R3.

Definition 4.7.3 Let A and B bhe disjoint compact convez bodies in R®. Let
the z-aris be the line through a shortest line segment connecting A and B. Put
a scale on the z-azis so that 0 and ¢ > 0 are endpoints of the above line segment.
Extend the z-azis to an ryz coordinate system with positive orientation. Let
L(8.0) be a rotation of the z-axis by angle © about the y-axis followed by a
rotation by angle 6 about the z-aris. Define the separation function f =
f(A. B, 0, ®) as the signed distance between the orthogonal projections of A and

B onto L(6.0).

Theorem 4.7.4 Let A and B be disjoint compact convez bodies in R®. Then
for fized (A. B) the separation function f = f(A. B.f.0) is a continuous func-
tion of (8. ¢).

Proof. The proof is essentially a repeat of the proofs of Section 4.4. For fixed

(6o, o) let Agc denote the rectangle circumscribing A and let By: denote
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the rectangle circumscribing B with a set of sides orthogonal to the direction
(60. ). Also let Aqs denote an inscribed line segment connecting support
points of the support planes to A orthogonal to (6. ®s) and let By, denote
an inscribed line segment connecting support points of the support planes to
B orthogonal (6g.¢o). Let f denote the separation function of A and B. let
foc denote the separation function of Agc and Byc. and let fo; denote the
separation function of Ag; and By;. We then use a delta-epsilon argument and

the fact that f is bounded by foc and fo; to show that f is continuous. O

4.8 Examples and Counter Examples

The assumption of compactness was sufficient and convenient but not ab-
solutely necessary for the theorems of this chapter. Consider for example the
parabolas

sa(r) = (x.-r?) spr)=(-r.* +¢)
where ¢ > 0. We differentiate to get the tangent vectors

Saz(r) = (1. -2z) sg.(r) = (-1.2x).

From these we compute the upward unit normal vectors

n) =
4
(2.’2.'3, 1)

ng(zg) = JiZaT
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At separating double tangent points the upward unit normal vectors must be

the same. Thus ry = rg and we can drop the subscripts. Then solving

na(r) - sa(z) = np(r) - sp(r)

vields

These two values of r correspond to the two separating double support lines.
The parabolas are not compact. Thus compactness is not a necessary condition
for the existence of a pair of separating double support lines. See Figure 4.1
for a graph of the envelope of separating double support lines for ¢ = 9/2

A second set of examples shows that although the compactness condition
may be relaxed it cannot be dropped entirely without substituting some other

sufficient condition. Consider the one-sheeted hyperbolas
salr) =(r. =Vt + 1) sg(r)=(-r.vVri+1+c)

where ¢ is a real number. We differentiate to get the tangent vectors

r

,s_h.(.l‘) = (1. —ﬁ) SBI(I) = (—l. —\/;_2+=1>

From these we compute the upward unit normal vectors

na(ry) = bra Ve £

( _ (zs. VIh +1)
AT
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At separating double tangent points the upward unit normal vectors must be

the same. Thus r4 = rp and we can drop the subscripts on r. Then solving

na(r) - sa(x) = np(z) - sg(r)

yields
9

Vri+l=-2
¢
which implies that in contrast to the previous examples there can only be

separating double support lines if ¢ < 0. Solving for .r then implies

Vi-&

c

r=x=
These two values of & correspond to the two separating double support lines
which exist if ¢ < 0.

Figure 4.2 shows a pair of one-sheeted hyperbolas when ¢ = 1. The asymp-
totes are also shown. The reason that there is no separating double support
line is that the slope of the hyperbolas is never steeper than the +1 slope of
the asymptotes and the figures are too far apart to share tangent lines with

such moderate slopes. Thus we can only drop the compactness condition if we

replace it with some other condition.

Figure 4.3 for a graph of the envelope of separating double support lines

for a pair of one-sheeted hyperbolas when ¢ = —3/2. Once again the slopes

of each sheet are between —1 and 1 but now the two sheets are close enough

that they can share tangent lines with moderate slopes.
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Thus we may drop the compactness assumption only if we replace it with
some other condition which may be more complicated. Thus it is often conve-

nient to assume compactness.

4
Sada.
rT

_'/
EaiN
e 51

Figure 4.1: Support Lines of a Pair of Parabolas
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Figure 4.2: Pair of One-Sheeted Hvperbolas With Asymptotes

Figure 4.3: Support Lines of a Pair of One-Sheeted Hyperbolas
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CHAPTER 5

MEASURE OF PLANES
SEPARATING TWO CONVEX

POLYHEDRA IN RS

5.1 Introduction

A classical formula for the measure of planes intersecting a compact convex

polyhedron in R® is

SN

where the sum is taken over all edges v and |v] is the length of the edge and
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|V| is the exterior angle of the adjoining faces at the edge. See for example
Ambartzumian (1990. 114).

We seek to use the results of Chapters 3 and 4 to derive an analogous
formula for the measure of planes separating two disjoint compact convex
polyhedra in R®. We assume that each polyhedron is nondegenerate (i.e. not

all of the vertices of the polyhedron are coplanar.)

5.2 Wedge Coefficients

Theorem 5.2.1 Let P be the set of vertices of a pair of nondegenerate dis-
joint compact convez polyhedra in R®. Then the measure of the set of planes
separating the polyhedra is the sum over all allowable separating wedges of the
wedge functions taken with a minus sign if the needle of the wedge is an edge

of one of the polyhedra and taken with a plus sign otherwise.

Proof. Let Q be the set of planes which separate the two polyhedra. Note
that @ is also the set of planes which separate the two sets of vertices. Thus
Theorem 3.2.2 may be applied.

To compute the coefficients c,(Q) consider four cases below. In each case
let A and B denote the two polybhedra. Let H* denote the half-space which

is determined by a plane of the wedge and contains the interior of B if such a
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half-space exists. Otherwise arbitrarily denote one of the half-spaces as H'.

Let H™ denote the other half-space determined by the plane of the wedge.

Case [.
If a plane of a wedge intersects the interior of one or more of the polvhedra then
disturbing it slightly will not alter that condition and therefore the plane will

not separate the two polyhedra. Thus all four Io(i. j) = 0 and thus ¢,(Q) = 0.

Case II.
Suppose that the interiors of the two polvhedra are in the same half-space
H* determined by a plane of the wedge. Then all of the vertices of the two
polvhedra except the vertices of the wedge are in H*. Since by assumption
each polyhedron is nondegenerate then at least 1 vertex from each polyhedron
is in H*. If the plane of the wedge is perturbed in such a way that both
vertices of the wedge are in H '’ then all of the vertices of both polvhedra will
be in H* and the perturbed plane will not separate the polvhedra. If the
plane of the wedge is disturbed in such a wayv that at least one of the vertices
of the wedge is in the other half-plane H~’ then the plane separates that vertex
from the other vertices of the same polyhedron and thus does not separate the

two polyhedra. Thus under either scenario all four Ig(i.j) = 0 and therefore

(@) =0.
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Case III.
Suppose a plane of a wedge separates the two polyvhedra and that the needle
of the wedge is an edge of a polyhedron. Let A be the polyhedron for which
the needle is an edge and let B be the other polyhedron. Then the half-space
H~ contains all of the vertices of 4 except the vertices of the wedge. Thus
if the plane of the wedge is perturbed in such a way that both vertices of
the needle of the wedge are in H~' then all of the vertices of A will be in a
different half-space than the vertices of K and thus the perturbed plane will
separate the two polyhedra. If the plane of the wedge is perturbed in such a
way that at least one of the vertices of the needle of the wedge is in H"' then
the perturbed plane will separate the vertices of A and thus will not separate
the two polyhedra. Thus the coefficient IQ(;.;) is 1 and the remaining three
coeflicients Ig(:. j. ) are 0 and therefore ¢,(Q) = —1. If B is the polvhedron for
which the needle is an edge then by a similar argument the coefficient Ig( : ;)
is 1 and the remaining three coefficients Iq(:. j) are 0 and therefore in either

case ¢,(Q) = -1.

Case [V.

Suppose a plane of a wedge separates the two polyhedra and that the needle

of the wedge has endpoints on different polyhedra. Let a and b denote the
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vertices of the needle which are vertices of polyhedra A and B respectively. If
the plane of the wedge is perturbed in such a way that H*’ contains b and H~’
contains a then H*' will contain all of the vertices of B and H~’ will contain
all of the vertices of A and the perturbed plane will separate the polyhedron
pair. Otherwise the perturbed plane will separate the vertices of one of the
polyhedra and will not separate the polyhedron pair. Thus one of the two
coefficients IQ(E.;) and Iq(;,;:) is 1 and the other three coefficients Ig(i. j)

are 0 and thus ¢,(Q) = 1.

The four cases are exhaustive. |

5.3 Neighboring Wedges

Theorem 5.3.1 Let A and B be disjoint nondegenerate compact convez poly-
hedra in R®. Then each face of an allowable separating wedge whose needle
contains a verter of each polyhedron contains exactly one needle of another
allowable separating wedge such that this needle also contains a vertez of each

polyhedron.

Proof. Consider one of the two faces of a separating wedge whose needle

contains vertices from each polyhedron. [t follows from the definition of a
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wedge that this wedge face contains at least one additional vertex of A or B

in addition to the endpoints of the needle of the wedge.

Case L.

All of the vertices on this wedge face other than endpoints of the original
needle are from the same polyhedron. Without loss of generality suppose all
of these vertices are vertices of .

Let a, be a vertex of A and let b; be a vertex of B and let ¢, and b, be
endpoints of the original needle. Form the convex hull A’ of the vertices of A
which are on the face of the wedge. Since A is convex then the vertices of A’
coincide with the vertices of .4 which are on the face of the wedge. Now use b,
and A’ to form a cone. Since a;b; is the needle of a separating wedge then the
line forming one of the boundaries of the cone will go through «,8,. The other
line will go through b, and a second vertex of A’. call it a;. Note that the line
through a, and b; divides the wedge face into two half-planes and that all of
the vertices of A’ are in the same closed half-plane.

Project R* onto a plane P orthogonal to the line through the vertices u,
and b,. Then the projection of the face of the wedge is a separating double
support line for the polygons ProjAd and ProjB. Also the projections of the
vertices of A" will lie in the same half-line determined by the point Proja, =

Projb;. Since no other vertices are on the line. the line may be rotated slightly
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and still separate the interiors of the two polygons. This rotation corresponds
to a rotation of the face of the wedge about the line through a,b,. Since the
plane is an orthogonal projection onto the line then the rotated plane will still
separate the polyhedra. Thus a; and b, are endpoints of a needle of another
separating wedge.

No other vertices of A’ may be paired with b, to form the needle of a

separating wedge because such a needle would separate vertices of A’.

Case II.

Each polyhedron has at least two vertices on this wedge face and one of the
polyhedra has exactly two vertices on the wedge face such that one of the
vertices is contained in the convex hull of all of the vertices of the wedge face.
Without loss of generality assume that the polyhedron B has vertices b, and
b, and no other vertices on the wedge face and that b, is interior to the convex
hull of all of the other vertices of the wedge face.

Note that b, must be a vertex of the convex hull of all of the other vertices of
the wedge face. Otherwise all points of B on the wedge face are interior points
of the convex hull and thus any line through an interior point will separate
points of 4 and thus any plane through such a line cannot be rotated about

that line without intersecting the interior of 4.
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Note also that an edge of the above convex hull cannot be the needle of a
separating wedge because points of A and B would be in the same half-plane
determined by the line through the edge. Thus the wedge face could not be
rotated about that line without intersecting the interiors of either A or B.

Now as in Case [ let A’ be the convex hull of the vertices of A which are on
the face of the wedge and use b, and A’ to form a cone. Let a; and a, be the
vertices of A’ that are on the boundary of the cone. Then the only possible
needles of separating wedges with needles on different polyhedra are 4,6, and
aqb,. Without loss of generality assume that the original needle was a,b,. Let
B’ be the line segment b, b,.

Note that the line through a,b;, separates points of A’ and B’. As in Case
I above project R onto a plane P orthogonal to the line through the vertices
az and b;. Then the projection of the face of the wedge is a separating double
support line for the polygons ProjA and ProjB. Also the projections of the
vertices of A’ and B’ will lie in different half-lines determined by the point
Proja; = Projb,. Thus the line may be rotated slightly and still separate the
interiors of the two polygons. This rotation corresponds to a rotation of the
face of the wedge about the line through asb,. Since the plane is an orthogonal
projection onto the line then the rotated plane will still separate the polyhedra.

Thus a; and &, are endpoints of a needle of another separating wedge.
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Case III.

Each polyhedron has at least two vertices which are vertices of the convex hull
of all of the vertices which are on the wedge face.

As in Cases [ and II above let A’ denote the convex hull of the vertices of A
which are on the wedge face and let B’ denote the convex hull of the vertices
of B which are on the wedge face. Then from Crofton’s Theorem there are
exactly two separating double support lines to 4’ and B’. Without loss of
generality assume that one of the lines goes through a, and &, and that the
other line goes through «, and b, where a,. ¢y € A’ and b,. &, € B’. Thus
using arguments similar to those in Cases I and II above the only needles of
separating wedges with vertices of different polvhedra on this wedge face are
aby and azby. Without loss of generality take a6, to be the original needle
and take a,b; to be the additional needle. Crofton’s Theorem also implies that

these two needles meet in a point interior to each of the needles.

Cases L. [I. and III. are exhaustive.

0

5.4 Wedge Cycle

Theorem 5.4.1 Let A and B be disjoint compact conver polyhedra in R3.

Suppose that A and B have ezactly n separating wedges whose needles contain
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vertices from different polyhedra. Let the z-azxis be the line through the shortest
line segment connecting A and B. Put a scale the z-axis by letting the inter-
section with A be 0 and the intersection with B be ¢ > 0. Ertend the z-azxis
to an ryz-coordinate system with positive oriertation. Let P be a plane of a
separating wedge whose needle contains vertices of different polyhedra. Let 8
be the angle unth the r-axis of the projection of the normal vector of P onto

the ry-plane. Then:

(i) The values of 8 on each wedge form an interval modulo 2.

(it) The wedges may be ordered according to the values of 8 and the values of
8 on wedges wy.wy.- -+ ., are respectively all of the values of 8 in the intervals

(6102, [62.65]. - - . [6. 4]

(iii) One face of each wedge contains the needle of the nect consecutive wedge.

The other face of each wedge contains the needle of the preceding wedge.

Proof. Let w be the angle of rotation about the needle of the normal vector
of a plane P of a separating double support wedge with vertices on different
polvhedra. Then the angle § may be obtained from w by a composition of

rotations. computing the normal vector. projections. dot product. and trig
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functions. Thus @ is a composition of continuous functions and therefore is
a continuous function of ¢. Furthermore by Theorem 4.7.1 there is only one
support plane for each value of 8. Thus # is monotonic. Thus the extreme
values of 8 for each wedge occur at the faces. This proves (i).

Then Theorems 5.3.1, 4.7.1, and part (i) above together imply that the
value of 6 on a face is a maximum for one wedge and a minimum for the other

wedge. This proves (ii) and (iii). O

5.5 Envelope and Caps

Definition 5.5.1 Define the faces of the canonical envelope of separating
double support planes for two disjoint nondegenerate convex polyhedra (or

Just canonical envelope for brevity) as follows:

(i) If the conver hull of the two needles of a face of a wedge is a triangle then

a face of the envelope is that triangle.

(1) If the convez hull of the two needles of a face of a wedge is a quadrilateral
then the needles divide the quadrilateral into four triangles. The face of the
envelope is the union of the two triangles which are each bounded by an edge

of a polyhedron.
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The canonical envelope is then the union of the above faces over wedge

needles with a vertex on each polyhedron.

Theorem 5.5.2 The canonical envelope is an envelope. Furthermore the sep-
arating wedges of the envelope of separating double support planes for two dis-
Jjoint nondegenerate compact convex polyhedra are the same as the separating

double support wedges for the pair of polyhedra.

Proof. This is true by construction.

Theorem 5.5.3 The meusure of planes separating two disjoint nondegeneruate
compact convez polyhedra in R* is equal to the wedge function over the sep-
arating wedges of the envelope minus the wedge function over the separating

wedges of the caps.

Proof. By Theorem 5.2 above the measure of planes separating the two poly-
hedra is the sum over all allowable separating wedges of the wedge functions
taken with a minus sign if the needle of the wedge is an edge of one of the
polyvhedra and taken with a plus sign otherwise.

Since A is convex there is exactly one support plane to A for each direction
(6. ¢) of the outward normal vector. Thus the values of (6. @) for the planes

of an outer wedge of A are distinct from the values of (8. o) for the planes of
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other outer wedges of A. The planes of each outer wedge of A are rotations
of each other through an angle. Thus the image of the unit normal vector
of these planes is a geodesic curve on the unit sphere. The corresponding
geodesic curves of outer wedges which share a face will meet at a point on the
unit sphere corresponding to the unit outward normal vector of the plane of
the face. Thus the values of (6, ¢) for planes of outer wedges of A are distinct
and pathwise connected.

We may evaluate the separation function of A and B on the normal di-
rections of the planes of the outer wedges of edges of A. Since by Theorem
4.7.4 the separation function is a continuous function of (8. ©). the edges of A
for which the separation function is zero bound the edges of A for which the
separation function is positive. These two sets of edges may or may not be the
same. We note that planes for which the separation function is positive are
separating planes and that the value of the separation function on the support
plane through the closest point of A to B is positive. Furthermore the edges
of A for which the separation function is zero are points of separating double
support and thus the edges of A for which the separation function is positive
are edges of the cap of A. Thus the set of separating wedges on the cap of A
is precisely the set of separating wedges on the edges of A. Likewise the set of
separating wedges on the cap of B is precisely the set of separating wedges on

the edges of B.
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Furthermore the separating wedges whose needle contains a vertex of each
polyhedron are the wedges of the envelope by construction. This proves the

theorem. a
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CHAPTER 6

A POLYHEDRAL EXAMPLE:

MEASURE OF PLANES

SEPARATING CUBES

6.1 Introduction

In this chapter we will specialize the formulas for the measure of planes

separating polyhedra to the measure of planes separating cubes.
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6.2 Planes Separating Parallel Coaxial Cubes

Let (r.y.2) € R3. Consider two parallel cubes with sides of length s and
distance ¢ apart and a common axis of symmetry. Without loss of generality

we can coordinatize the vertices as follows: Cube A has facing vertices
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Because of the symmetry of this pair of cubes all of the tangent planes will
meet at the central point

(0.0, %)
Thus the envelope of separating double support planes can be formed by join-
ing the facing edges of the two cubes to the central point. The envelope is

shown in Figure 6.3. A straightforward computation gives the total measure

of the wedges over the four edges of the envelope as

222 + 2 cos™! | =
8- + ¢* cos (C2+32)

and the total measure of the wedges over the eight edges of the caps as

4scos™! <—£——> )
Vars
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Thus the measure of planes separating the two cubes is

82 s
2T E zcos-l( , ) _4“05-1(___).
e 2+ g2 V2 + 82

6.3 Planes Separating Coaxial Cubes Rotated
by 7/4

Let (r.y. z) € R®. Consider two cubes with sides of length s and distance
c apart such that one cube is rotated by an angle of /4 about a common axis
of symmetry. Without loss of generality we can coordinatize the vertices as

follows: Cube A has facing vertices

(5 .o).(g.-g.o).(-g.-g.o).(-

and Cube B has facing vertices

(0529 (509 (0-520)- (G2 5)

5‘

(16

| @«
[NV
[ VY 7Y

The envelope is formed by pasting together triangular flats which are formed
from the convex hull of the points of contact of the separating double support
planes. Thus the faces of the envelope will be triangular flats consisting of the
convex hull of an edge of a facing face and a remote facing vertex from the
other cube. By inspection we see that the vertices

S

(6.3.1) (3 -g,o). (g

S

0). (-\/—g,o.c)

[T 7
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lie on a separating double support plane and form a face of the lower envelope.
Subtracting the third vertex from each of the first two vertices yields two

support vectors
s s S 5
<§(l+ \/5)—-_;—(.) and (5(1+ \/E)—E—c)

Taking the cross product and normalizing vields the unit normal vector

L ('20.0.3([ + \/’.7))

Ve + (3 +2v3)s?

to this face of the envelope.

By changing one of the vertices we obtain a set of vertices

(6.3.2) (—%.o.c). (0. —%.c). (% 0)

of an adjoining face of the upper envelope. Again subtracting the third vertex

12 @

from each of the other vertices yields the support vectors
S 3 S S
(—5(14'\/5)—5(:) and (—5—5(1'*"\/5)(.)

Again taking the cross product and normalizing yields the unit normal vector
(\/‘jc. ﬁc.s(l + \/3))
v"462 +(3+2V2)s?

ng =

to this adjoining face of the envelope. Thus the angle between these adjoining

faces is

. (2\/:78 +s2(3+ 2\/‘.7))

cos '(na -ng) =c
s~ (B - nB) = cos 12 + 52(3 + 5V/2)
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These faces share an edge with vertices

| &
o
SN’

(—%,O.C) a.nd(%.. .

The length of this edge is

b .
§v4c~’ +2s2(2 + V2).

Thus the wedge function for these two adjoining faces is

2v2 + 52(3 + 2V2)
A2 +52(3+sV2) )

o) —

- length - angle = i\/-lcl +2s%(2+ \/5) cos"(

Because of the rotational symmetrv of this pair of cubes. the wedge function
is the same for the other 8 wedges of the envelope.
We next compute the wedge function on the caps. The angle between the

envelope face and a facing face of the cube is
s(1+ 2
cos”!(na - (0.0.1)) = cos"l( L_\/‘);)
y i + 523+ 2V2)
The edge of this wedge is the edge of the cube which has length s. Thus the

wedge function on this wedge is

-length-angle:éscos'l( 7 s(1+\/‘3 )
Ve + 523+ 2v2)

|

Thus the measure of planes separating the cubes is the sum of the 8 wedges

of the envelope minus the sum of the eight wedges of the cap which is

2v2¢ + (3 + 2V/2)
4c® + s2(3+ 5V2)

‘2\/402 +252(2+ \/5) cos_l(
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—4s cos"l< 8(1 + @ ———)
Ve + s2(3+2V2)

See Figure 6.1 for a picture of the cubes and Figures 6.4 and 6.5 for a picture

of the envelope.

6.4 Empirical Calculations on Cubes

A QBasic program was written which takes the position of the cubes as
input and then uses a random number generator to randomly place the cube
pair on a grid of random planes. These random placements are shown visually
on the screen. The proportion of pairs which are separated by a plane is then
computed and compared to the theoretical probability.

When one runs the program the menus and input and output information
are displayed on a sequence of six screens. See Figures 6.8, 6.9. and 6.10 for
typical computer input and output as displayed on the screen while running
the programs. To save space here each figure contains the information shown
on two screens. See Appendix B for the actual QBasic computer program.

The empirical evidence was not very convincing. The program was run
several times for as many as 10, 000 pairs of cubes and the theoretical and em-
pirical probabilities were not necessarily close. There are several possibilities

as to why this might be so. It might be that convergence is very slow. It might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

be that our program is defective and for example somehow does not uniformly
distribute the placements of the cube pairs on the grid.

The program was modeled after a similar QBasic program written by Tem-
ple faculty member Eric Grinberg which randomly placed line segments on a
grid of parallel lines and used that to compute the probability that a randomly

placed line segment would intersect a line of the grid.

6.5 Cube Figures

The mathematical computer program Maple V Release 6 was used to create
graphs of the cubes and of the envelopes.

Figures 6.1 and 6.2 show pairs of cubes in various orientations with respect
to each other.

Figure 6.3 shows the envelope of separating double support planes for a
pair of cubes where the second cube is a translation of the first cube in a
direction parallel to a face of the first cube. The envelope is a cone. In this
case the separating double support planes all meet at the vertex of the cone.

Figure 6.4 shows the envelope of separating double support planes for a
pair of cubes where the second cube is obtained from the first cube by first
rotating by angle /4 about an axis of symmetry of the first cube and then

translating in a direction parallel to that axis of svmmetry. Note that the
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envelope contains self-intersections. Figure 6.5 shows two adjoining faces of
the envelope. Note that although non-adjoining faces may meet in interior
points. adjoining faces meet only along an edge.

Figures 6.6 and 6.7 show the envelope of separating double support planes
for a pair of cubes where the second cube is obtained from the first cube by
first rotating by angle w/4 about an axis of symmetry of the first cube and
then translating in a direction perpendicular to that axis of symmetry. For
this example the nature of the envelope depends on how far the translation
is. A straightforward calculation shows that if the translation is more than
one and a half times the side then six vertices of the moved cube are points of
separating double tangency and thus vertices of the envelope. f the translation
is less than one and a half times the side then only two vertices of the moved
cube are points of separating double tangency and vertices of the envelope.

As an example of the type of calculations used in graphing the envelope
we show the computation of the envelope for the cubes of Section 6.3 below.
These cubes appear in Figures 6.4 and 6.5.

We somewhat arbitrarily specialize Formula 6.3.1 for the vertices of a face

of the lower envelope to the case where ¢ = 4 and s = 2 to get

(1.-1.0). (1. 1.0). and(—v2.0.4)
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We use these vertices to parametrize the face as
far(p.q) = (1 - g)[(1 = p)(1.-1.0) +p(1.1.0)] + ¢(-v2.0.4)

= (1-a(1+v2).(1-9) (29 - 1) 49).
Taking advantage of the symmetry of the pair of cubes we repeatedly rotate

the above face about the z-axis by angle 7 /2 to get the other faces of the lower

envelope. Thus multiplying fa; by the rotation matrix

0 -1 0
1 0 0
0 0 1

gives the other four faces of the lower envelope as
fa2(p.q) = ((1 —-q){(2p-1).-1+¢q(1+ \/‘.3).4q).

fas(p.9) = (—1 +q(1+v2).-(1 - q)(2p - 1)~4q)-
faa(p. @) = (—(1 -q)(2p-1).1-q(1 + \/5)-44)-

Likewise we specialize Formula 6.3.2 for the vertices of a face of the upper

envelope for ¢ = 4 and s = 2 to get

(—v2,0.4), (0.~ v?2.4), and(1.1.0).
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As before we use these vertices to parametrize the face as
fai(p.q) = (1 - ¢)(1.1.0) + q[(l - p)(=v2.0.4) + p(0. —v2.4)]
= (1 -q+ \/§(p -1)q.1-q- \/‘qu.élq).
Again taking advantage of the symmetry of the pair of cubes we repeatedly

rotate the above face about the z-axis by angle 7/2 to get the other faces of

the lower envelope. Thus multiplying fg; by the rotation matrix vields
hﬂpﬂ==(1—q—¢%m—l+q—¢ﬂp—U%M)
fea(p.q) == (—1 +q-V2p-1q.-1+q+ \/§pq.4q). and
fea(p.q) == (—l +q+V2q.1 - g+ V2p - I)q.-lq).

The envelope was then graphed using the following Maple commands:

with(plots):

display([

plot3d([1-q*(1+sqrt(2)), (1-q)*(2#p-1) ,4xq],
p=0..1,9=0..1),

plot3d([(1-q)*(2*p-1),-1+q*(1+sqrt(2)),4#q],
p=0..1,q=0..1),

plot3d([-1+q*(1+sqrt(2)),-(1-q)*(2+p-1) ,4*ql,
p=0..1,g=0..1),

plot3d([-(1-q)*(2*p-1),1-q*(1+sqrt(2)),4#*q],
p=0..1,q=0..1),

plot3d([1-q+sqrt(2)*(p-1)*q, 1-q-sqrt(2) *p*q,4*q],
p=0..1,g=0..1),

plot3d([1-q-sqrt(2) *p*q,~1+q-sqrt(2) *(p-1)*q,4*q],
p=0..1,q=0..1),

plot3d([-1+q-sqrt(2) *(p-1) #q, -1+q+sqrt (2) *p*q, 4*q],
p=0..1,q=0..1),

plot3d([-1+q+sqrt(2) *p*q, 1-q+sqrt(2) *(p-1)*q,4#q],
p=0..1,q=0..1)1);
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Figure 6.1: Cubes: Parallel. Rotated About z-axis. and Rotated About y-axis
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Figure 6.2: Doubly Rotated Cubes
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Figure 6.4: Envelope for Cubes Rotated an Angle of /4 About z-axis
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Figure 6.5: Consecutive Faces of Envelope for Rotated Cubes
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Figure 6.6: Envelope for Distant Cubes Rotated an Angle of v /4 About y-axis
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This pragram computes the probability that a random plane scparates
two fixed disjoint cubes with equal sides s and such that the second
cube has fixed orientation {_,_,_} and fixed center {cl,c2.c3) relative
to the first cube given that the plane hits the fixed sphere centered

at {c1{2.c2J2,c3{2) with radius c+SQR([I*s where c is the distance

the centers of the two cubes.

Please type a number to represent the comman value s for the lengths
of the sides of the two cubes, for example 10, and then press enter.
(s must be greater than 0)

7210

Please type three numbers separated by commas to represent the
arientation (_,_,_] of the second cube in § radians relative to the
first cube, for example .25,.25,.25, and then press the enter key.
((._._) must satisfy 8_ <.5 and 0__<1 and 0__<2}

?.25,.25,.25

Please type three numbers separated by commas to represent the
center (c1,c2,c3) of the second cube relative relative to the

the first cube, for example 0,20,0, and then press the enter key.
The two cubes must not intersect.

20,20,0

Here is the cube pair you have chosen. In the drawing the cube pair
is rotated so that the center of each cube is on the vertical axis.

D
(]

Theoretical computation of probability may take several minutes.
Please type 1 to skip or any other number not to skip.
Do you wish to skip to empirical computation of probability? [

Figure 6.8: Q-Basic Input for Cubes
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The motion-invariant measure of planes separating two cubes is the
sun of measures of the solitary separating wedges with a minus or
plus sign depending on whether the needle of the wedge is an

edge of a cube or not respectively plus the of the clustered
separating wedges such that the vertices of the needle of the wedge
are fron different cubes. The measure of the wedge is half of the
length of the needle times the size of the angle. See Ambartzumian’s
red book page 114 for analogous formula for convex polyhedrons.

The above measure is converted to a probability measure by dividing by
the measure of planes hitting a sphere containing the two cubes.

This measure is Z2id vhere d is the diameter of the sphere containing
the two cubes. See Ambartzumian’s red book page 122.

Ue somewhat arbitrarily take d to be c+SQR(3)ws.

Computing thearetical probability . . . very roughly 6 % completed

The standard separating measure = 4.435766

The cubes are contained in a sphere of radius 18.66625

Thus we take our theoretical probability to be the conditional
probability that a plane separates the cubes given that it hits
this sphere. Thus the theoretical

probability = measure / (4 = pi = p) = 1.891652E-62

Please type a nunber N to represent the number of pairs of cubes
to be randomly placed on a grid of parallel plames in order to
conpute the empirical probability that a plane separates the cubes.
(N must be a positive integer.) How mamy pairs of cubes? 160

Figure 6.9: Q-Basic Theoretical Results
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1 separation(s) in 160 tries.
Empirical probability = .61

To see the cubes clearly turn up the brightness and contrast.
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Press any key to continue. Are you ready to continue? ||

1 separation(s) in 160 tries.
Empirical probability = .61
Estimated standard error = 9.949974E-03
Theoretical probability = 1.891652E-62

Press any key to continue

Figure 6.10: Q-Basic Empirical Results
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CHAPTER 7

CONICAL ENVELOPES

7.1 Introduction

In general the separating double support planes for a pair of convex bodies
share no point in common and thus the envelope is not conical. There are
however interesting examples where the envelope is conical. If the envelope
is conical then the computations are easier. A helpful first step in analyzing
such situations is to be able to compute the measure of planes intersecting
the union of a convex body and the adjoining part of the envelope up to the
vertex. Thus we want to compute the measure of the convex hull of the union
of a point and a convex body. In other words we want to be able to compute

the measure of a coned convex body.
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7.2 Measure of Planes Intersecting a Coned

Convex Body

A coned convex body is the convex hull of the union of a convex body and
a point. If the original convex body is polyhedral then the coned convex body
will also be polyhedral. In such a case the measure of planes intersecting the
coned body is known to be equal to the sum of the wedge functions over the
edges of the coned body where the wedge function is equal to half the length of
the edge times the outer angle of the wedge. See for example Ambartzumian
(1990. 114). If the original body is smooth then the coned bodyv will be smooth
everywhere except perhaps the vertex and the points of tangencv. See Figure

7.1 below for examples of coned convex bodies.

Definition 7.2.1 A smooth cone is the conver hull of the union of a smoath

conver body and a point.

We note that the class of smooth cones is more general than the class of smooth
convex bodies because the point could be taken to be an interior point.
Ambartzumian (1990. 120-122) gives a proof of a theorem that measure of
planes intersecting a smooth compact strictly convex body in R® is equal to
the integral of absolute mean curvature over the boundary of the body. Am-

bartzumian's assumption that the body is strictly convex was not explicit but
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Figure 7.1: Coned Cube and Coned Sphere

implied by the fact that the result was expressed in terms of principle radii of
curvature. Ambartzumian states that the theorem is well-known. R. Deltheil
(1926. 95) attributes the theorem to H. Minkowski. Below we essentially re-
peat the proof found in Ambartzumian’s book with some modifications so that

the result applies to smooth cones.

Lemma 7.2.2 Almost every plane which intersects the interior of a compact
strictly convexr smooth cone intersects the boundary of the smooth cone in a
continuous simple closed curve which is smooth ecrcept at the points of the
boundary between the smooth part and the cone and which is continuously

differentiable everywhere.
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Proof. The proof will be in two steps.

Step 1. We will show that the tangent points form a smooth curve. Let 4
denote a compact smooth strictly convex body in R®. Let (r.y.z) denote a
point in R3. Let B denote the convex hull of the union of A with a point not
in A. Without loss of generality we may locate the vertex of B at the origin,
locate the closest point of 4 on the z-axis. and parametrize the boundary of 4
by direction (6. @) of the outward normal vector for 0 < § <2rand0< o <7
where o is the angle of the normal vector with the :-axis and 6 is the angle
with the r-axis of the projection of the normal vector onto the riy-plane. Then

planes tangent to the conical portion of the boundary of B must satisfy
N(6.0)-5(8.0) =0

where S(f.0) is a point on the boundary of A and :V(6. o) is the unit normal
vector at that point. Let f: R? — R be defined by f(8.0) = N(8.0)- S(4.0).

Then the partial derivative
fo=No(0.0)-S(0.0) + N(6.0) - S,(0.0) = N,(6.0)- S(8.0).

In order to apply the implicit function theorem (Theorem 1.7.1) we wish to
show that f, is non-vanishing. We proceed as follows.
Because S is parametrized by normal direction (6. o) the equation of the

normal vector at a point S(f. o) is

N(0.0) = (cosfsin @.sin § sin 0. cos 0).
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Thus differentiating N yields the partial derivatives
Ny = (— sin fsin ¢, cos 8 sin ¢. 0) and
N, = (cosf cos @.sinf cos ¢. — sin o).

Thus NV, Ny, and NV, are mutually orthogonal. Thus N, and N, may be iden-
tified with a pair of orthogonal vectors in the tangent plane at S(6,¢). We
also note that the z-component of \Vy is zero. The line segment through the
origin and from a point of tangency S(6. ¢) may also be identified with a tan-
gent vector v. We note that the z component of v is nonzero by construction.
Thus v is coplanar with Ny and N, and not parallel to Ny. Therefore v is
not perpendicular to .V,. Also inspection of the formula shows N, is nonzero.
Thus f, is non-vanishing. Therefore by the implicit function theorem there

exists a smooth function v(f) satisfving
N(8. w(8)) - S(0. w(6)) = 0.

Thus the cone and the original surface share points of tangency on the smooth
curve S(6.y(0)). Furthermore the conical part of the smooth cone may be
parametrized by tS(6. v(6)) for 0 < t < | and thus is smooth away from the
vertex and the double tangent curve. Also at the double tangent curve the
smooth cone is continuously differentiable since the tangent planes for both
surfaces agree at those points. Thus the boundary of the smooth cone is

continuously differentiable except at the vertex.
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Step 2. We will now characterize the intersection of a plane with the
smooth cone. Let T denote the boundary of the smooth cone. Parametrize T

by
—2-5(0.12(8)) for0< o< (b

L{f)

T(h.0) =
S(8.0) forv(@)<o<nw

Let P denote a plane intersecting the interior of the smooth cone. Let u denote
a unit normal vector to P. Assume the :-coordinate of u is nonzero. Let d
denote the signed distance of the plane from the origin. Assume d # 0. We
note that the set of planes which intersect the interior of the smooth cone but
which do not satisfy these conditions on d and the z-coordinate of u is a set
of measure zero.

Then the intersection of P and T must satisfy «-T(f.0) = d. Let f(8.0) =

u-T(8.9). Then f is continuously differentiable except at the vertex and

u- u_(lg)S for 0 <o < v(f)

fo=u-T, =
u-S, for v(f) <o<=

Thus for 0 < ¢ < ©(#) since P is assumed to be a plane which does not
go through the origin then f, is nonzero. Also for v(0) < 0o < = since u
has a nonzero vertical component then it is not parallel to Sy and thus not
perpendicular to S,. Thus in either case f, is nonvanishing. Thus by the

implicit function theorem there is a continuously differentiable function ¢(#)
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satisfying u - T(6,{(6)) = d. Thus the intersection of P and T is given by the
continuously differentiable curve T(6.((6)).

Furthermore since f is smooth except where ¢ = 0 or @ = ¢»(#) the implicit
function theorem implies that the curve T'(8, ((#)) is smooth on the smooth
part of the boundary.

Furthermore since a plane and the smooth cone are both convex their
intersection will be convex. Since the plane is assumed to intersect the interior
of the smooth cone. the intersection will be a planar convex body. Thus
the boundary of the intersection will be a simple closed curve. Thus the
intersection of P and T will be a simple closed curve which is continuously
differentiable everywhere smooth everywhere except at points of the tangent
curve and differentiable evervwhere. C

We can now use this lemma to express the measure of planes intersecting a
smooth cone in terms of mean curvature. The proof is similar to a proof found
in Ambartzumian’s book (1990, 120-122) but with some modification to allow

for the presence of a singularity.

Theorem 7.2.3 The measure of planes intersecting a smooth cone in R® is

equal to the integral of absolute mean curvature over the boundary of the body.

Proof. Let A denote a smooth cone in R3. Let (r.y, z) denote a point in R.

Coordinatize planes by angle ¢ of the normal vector with the :-axis. angle ¢
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with the r-axis of the projection onto the ry-plane of the normal vector, and
signed distance p from the origin. In these coordinates the measure of planes

intersecting A is given by Theorem 1.5.5 as

2 pw/2 pa(0.8)
(7.2.4) / / / dp| sino do dé.
0 0 p(o.8)

Let Pc be a plane intersecting the boundary of A in a curve C. Then by
Lemma 7.2.2 above except for a set of planes of measure zero the points C
of intersection form a simple closed curve which is smooth everywhere except
points on the boundary between the strictly convex part and the cone and
differentiable everywhere.

Let ds denote the length element along C. Let k(p. @. 6. s) denote the cur-
vature on smooth portions of the curve. Let [ = I(p. ¢, 8) denote the indicator
function on the set of planes which intersect S in a simple closed curve which is
smooth everywhere except points on the boundary between the strictly convex
part and the cone and differentiable everyvwhere. Let J(p. ¢.6.s) denote the
indicator function on the set of non-smooth points of C. Let a = a(p. . 6. s)
denote the exterior angle at a point of C. We note that for almost all planes
a = ( at all points of C including points on the boundary between the strictly
convex part and the cone. Then according to the Theorem of Turning Tangents

1 s2(p.0.9)

2 (IJ(p. ®.0,3)a(p, 9,6.3) + [/;

= 1(p.0.68)

1(p, ¢.0)k(s. p. 9. 9)d8} ) =1L
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where s, — s is the length of the curve. See for example Do Carmo (1976,
267). Then Lemma 7.2.2 implies that except on a set of planes of measure

zero [ = 1 and a = 0. Thus except on a set of measure zero

1 92(p.0.0)
(7.2.5) — k(s.p.0.0)ds = 1.

6)
=T Jsi(p.0.9)

Then inserting Equation 7.2.5 into Equation 7.2.4 vields

1 2 pw/2 p2(0.0) s2(p.0.0)
q—/ / / / k(s.p.9.0)dsdp| sino do df.
=T Jo Jo p(08) Jsi(pob)

At each point of the curve C consider the plane Pp perpendicular to hoth
the tangent plane and the plane of C. Then Lemma 7.2.2 implies this plane
almost evervwhere intersects the boundary of A in a simple closed piecewise
smooth curve D. Let dt represent the length element along curve D. Let 5
denote the angle between the direction of dt and the direction of dp. Then a
change of variable dp = cos~ dt vields

(7.2.6)

1 2 pw/2 p(0.8)  psa(p.0.d)
)—/ / / / k(s.p(t).0.8)cos~ ds dt | sino do df.
=TJo Jo prle8) JIsi(pod)

According to a theorem of Meusnier we can replace the factor k(s. p(t). ®.8) cos v

appearing in the integrand above with the normal curvature k,(s.t. 0.8) to get

1 2 pw/2 (o) rsa(p.od) 1
’—_/ / / / kn(s.t.0.8) ds dt| sino do d6.
=4 Jo 0 pr(od) Je(pob)

See Ambartzumian (1990. 122). Let k (s.t) and ky(s.t) denote the principal

curvatures at the point (s.t) and let (;(s. . 0.6) and (y(s. t. 0. 8) represent the
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angles of the normal direction above with the respective principle directions.
Then we can use the Euler formula to replace the normal curvature in the

formula above with an expression involving the principal curvatures. This

1 2% ®/2 p2(0.8) sa(p.08)
= Jo 0 prlod) Ja(p.ob)

(kl(s, t) cos?(Ci(s. t. @, 0)) + ka(s. t) cos?(Ca(s. t, 0. 9))) ds dt] sino do df.

yields

See Do Carmo (1976. 145). We next note that the integration limits of the
inner two integrals are over the entire body and thus do not depend on ¢ and
6. Thus we can replace ds dt with surface area element dS and reverse the

order of integration to get

2r /2
71—/ / / (lcl cos’(Cy(s.t. 0.0)) + ky cos*(Ca(s. t. 0. 9))) sino do df dS.
~TJaJo Jo

Next we use a trig identity to rewrite the integral as

1 x pw/2
=

%(kl (1 +cos(2(i(s.t.8.0))) + k(1 + cos(2Ga(s. . 6. 9)))) sino do df dS.

When integrating the above equation over all values of © and 8 the values of ¢}
and (; will be evenly distributed over all values between 0 and 27. Thus the
cos terms will be zero. A straightforward integration of the remaining terms

with respect to ¢ and @ then vields
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which is what was to be proved. a

7.3 Measure of Planes Separating a Convex

Body and a Point

Lemma 7.3.1 Let A represent a point in R3. Let B be a disjoint compact
convez body in R®. Let C denote the convex hull of AU B. Then the set of
planes which separate A and B is the set of planes which intersect C but not

AUB.

Proof. Let P be a plane which separates 4 and B. Let H4 denote the closed
half-space determined by P which contains 4. Let Hp denote the open half-
space determined by P which contains B. Since P separates A and B there
are distinct pointsa € A C Hy and b € B C Hg. Since C is convex it contains
the line segment (1 — ¢t)a+tb for 0 <t < 1 connecting a and b. Let h4 and hg
represent the intersections of H4 and Hp respectively with the line segment.
Since H4 and Hpg are connected, disjoint, and mutually exclusive, so are h
and hg. Thus the line segment is a union of two disjoint mutually exclusive
connected sets. Furthermore 4 4 is closed and bounded. Thus there is a largest

value ¢y of ¢ such that (1—t)a+tb € h4. Thus P intersects C at (1 —tp)a+tob.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Thus the set of planes which separate A and B is a subset of the set of planes
which intersect C but not A U B.

Now let P represent a plane which intersects C but not AU B. Then since
C is convex there exists points ¢ € A and b € B and t such that 0 <t <1
and such that (1 —¢t)u+tb € PNC. Thus P separates a and b. Since P does
not intersect A U B then all points of B must be in the same half-plane as b.
Thus P separates B and A. Thus the set of planes which intersect C but not
A U B is a subset of the set of planes which separate 4 and B. Thus the set
of planes which separate A and B is the set of planes which intersect C but

not AU B.

]
—y

Theorem 7.3.2 Let A represent a point in R®. Let B be a disjoint compact
strictly conver body in R®. Let C denote the conver hull of AU B. Then
the measure of planes separating A and B is equal to the integral of mean

curvature over the houndary of C minus the integral of mean curvature over

the boundary of B.

Proof. By the lemma above the measure of planes which separate A and B
is equal to the measure of planes which intersect C' but not 4 U B. Since
the measure of planes through a point is zero. this is equal to the measure of
planes which intersect C but not B. Since B C C this is equal to the measure

of planes which intersect C' minus the measure of planes which intersect B. By
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Theorem 7.2.3 above this is equal to the total absolute mean curvature over

the boundary of C' minus the total absolute mean curvature over the boundary

of B. m|

7.4 Other Conical Envelopes

Theorem 7.4.1 Let A, and A, be disjoint compact conver bodies in R3. As-
sume that the separuting double support planes meet in exactly one point p.
For i = 1,2 let B; denote the conver hull of A;|J{p}. Also let [A,] and [B,] de-
note the sets of planes intersecting the interiors of A; and B; respectively. Let
[A1[|A2] denote the set of planes which separate A; and A;. Let [co A, A
denote the set of planes which intersect the conver hull of A,|J4,. Let m
denote a measure on the set of planes in R® which is invariant under rigid
motions. Then ezcept perhaps for a set of measure zero

(i) (A N[A2] = [B| N[B-

(i) [Bi]U[B2] = [co A1 A2

(iii) [Ar]| 42| = [co AL Aa]\[A1 U A2

Proof of (i). Note that for ¢ = 1.2 [4;] C [B;] because [Bj] is the convex hull
of (A;] and a point. Thus [4,]([A42] C [Bi](\[Bz]- Thus we only need to show

that [Bi]([Ba] C [Ai] N 4e].
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Let P be a plane which intersects B; and B, at points b; and b, respectively.
Since we are not concerned with sets of measure zero we can assume that P
does not intersect p. Then for i = 1,2 &; is on the line segment a;p for some
point a; € A;. Without loss of generality assume b; is an interior point of
the line segment. Otherwise we are done. Also without loss of generality we
can take b; to be on the boundary of B;. Thus the line segment a;p can be
extended to a separating double support line containing a point ¢} € 4,. ]
is distinct from a;. Otherwise 4, and b, would be on that same line through p
and thus P would intersect p. Thus the line through b, b, intersects the triangle
ayaip on the interior of side a;p at the point 4;. This line must intersect one
of the other sides of the triangle. It cannot intersect the side a}p. Otherwise
b, and b, would lie on the same line through p and thus P would intersect
p- Therefore the line through b b, must intersect the side a;a}. The point
of intersection will lie in A, since 4, is convex. Thus P contains a point of
A;. Thus P € [Ai]([A2]. But P was an arbitrary element of [B)|([B]
excluding a set of measure zero. Thus [B,|([Ba] C [Ai]([A:2] except for a

set of measure zero. Thus [B,]([Bz] = [A1]([A2] except for a set of measure

zero. This proves (i).

Proof of (ii). We note that p is in the convex hull of A4, (A, since it

connects points of double tangency. Thus for i = 1,2, B; which is the convex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

hull of A;{Jp is a subset of the convex hull of A,|{JA,. Thus [B\||J[B.] C
[co A;|J Az]. Thus we only need to show that [co A |J 4] C [B\]U[Bs]-

Let P be a plane which intersects the convex hull of A, |J A, at a point
¢. Without loss of generality assume that ¢ ¢ A, [J A2. Otherwise we are
done. Then for ¢ = 1.2 there are points ¢, € A, such that ¢ lies on the
interior of the line segment a;a,. Without loss of generality assume that a;.
ay. and p are not collinear. Otherwise we are done. Since P intersects the
triangle ¢ a,p at an interior point ¢ on side a¢,a, then P must intersect one
of the other sides of the triangle. But each of the other sides is contained
in one of the B,. Thus P intersects one of the B,. Thus an arbitrary plane
P € [co A, |J Ay] is contained in [By|{J[B,]- Thus [co A Az] C [Bi]U[B]-

Thus [co A 4] = [By]U[B:]- This proves (ii).

Proof of (iii). We note that if a plane P separates 4; and 4, then by
definition P doesn’t intersect 4, or 4, and furthermore A4; and A4, are in
different half-spaces determined by P. Thus for ¢ = 1.2 there are points a; € 4,
such that P intersects the line segment ayay. Thus P intersects the convex
hull of A, |J A2 but not A; or A;. Thus [4,|]4;] C [co A; U A2[\[A1  A2] and
we need only show that [co 4, (J 42]\[4: U 4] <[] 4]

Let P € [co A;|J A2]\[A;J A2]- Suppose two points ayp,a;; € A, lie in

different half-spaces determined by P. Then since A, is convex the entire line
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segment ajga,; is contained in A;. Furthermore P intersects this line segment.
Thus P intersects A;. This is a contradiction. Therefore all of A, lies in the
same half-space determined by P. Likewise all of A; lies in the same half-space
determined by P.

Now suppose that 4, and A, both lie in the same half-space determined by
P. Then the convex hull of A; | A; lies in that half-space. Then P does not
intersect the convex hull of 4, [J A,. This is a contradiction. Thus A, and 4,
lie in different half-spaces determined by P. Thus P separates A, and A4,. Thus
[co 41U A\[A1 U A2] € [Ai]]42]. Thus [eo Ay A\[Ai U 42] = [A1]] 4.

This proves (iii). a

Remark 7.4.2 The arguments are almost the same when considering lines
separating a pair of conver bodies in R?. However previous authors Crofton
(1869) and Sylvester ([1890] 1973) seemed to implicitly assume these results in

R?. A search of the literature did not turn up an explicit proof of these results.

Theorem 7.4.3 Let A, and A, be disjoint compact conver bodies in R®. As-
sume that the separuting double support planes meet in ezactly one point p.
Fori = 1.2 let B; denote the convex hull of A;|J{p}. Also let [A;] and [B;] de-
note the sets of planes intersecting the interiors of A; and B; respectively. Let
[A\[|A2] denote the set of planes which separate A; and A,. Let [co A, | As]

denote the set of planes which intersect the conver hull of A;|JA;. Let m
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denote a measure on the set of planes in R® which is invariant under rigid
motions. Then ezcept perhaps for a set of measure zero

(i) m{A|| N[A2] = m[By] + m[Bz] — m{co AiJ A,].

(ii) m{A;|U[A2] = mco A1 Az] + m[A1] + m[A;] — m[B,]| — m([B,].

(l‘ll) m[A1||A2] = m[Bll + m[Bgl - m[A[] - ‘m[Agl.

Proof of (i). m[4;]N[A2] = m[B:](\[B:] by Theorem 7.4.1(i)
= m[By] + m[Bs] — m[B,||J[Bz] from measure theory
= m[B,] + m[B,] — m[co A, Ay] substituting the result from Theorem

7.4.1(ii) for [B,]|U[B2] above.

Proof of (ii). m{A,](J[42] = m[A\] + m[A;] — m[A,]N[A2] from measure
theory.
= mfco A, | A2] + m[A\]+m[A;] — m[B,]| - m[B,] substituting results from

part (i) above for m{A;] ([ 42]-

Proof of (iii). m[A||A2] = m|co 4;J A2]\[A:|J A2] from Theorem T7.4.1

above
= mfco A; (J A2] — m[4, J 4] by additivity of measures
= m[By] + m[Bs] ~ m[A,] — m[Ay] substituting results from part (ii) above

for m{4,  Aa]- a
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Throughout this paper the main purpose of the assumption of compactness
is to assure the existence of the envelope. We note that if A, and A4, are not
compact but nevertheless have a conical envelope then we may replace 4, and
A, with compact A} and A}, which have the same caps and envelope and thus
the same separating planes and apply formula (iii) above. Thus the assumption

of compactness may be removed for the following corollaries.

Corollary 7.4.4 Let A and B be disjoint polyhedra with positive volume in
R? and with a conical envelope of separating double support planes. Then the
measure of planes separating A and B is equal to the wedge function over the

envelope minus the wedge function over the caps.

Corollary 7.4.5 Let A and B be disjoint strictly convex bodies in R* and with
a conical envelope of separating double tangent planes. Then the measure of
planes separuting A and B is equal to the integral of absolute meun curvature

over the envelope minus the integral of absolute mean curvature over the caps.

Theorem 7.4.6 If A is a strictly convez hody in R* and if B is disjoint from
A and the symmetric image of A with respect to a point then the envelope
of separating double tangent planes if it erists is a cone with o verter at that
point and the measure of plunes separating A and B is the total absolute mean

curvature over the envelope minus the total absolute mean curvature over the

caps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

Proof. Without loss of generality parametrize the nearby boundaries s4 and
sg of A and B respectively as follows.

sa(r.y) =(r.y.—f(r.y)). sg(c.y) = (—r—y.c+ f(r.y)) where ¢ > 0 and
f is a strictly convex function defined on a bounded region which includes the
interior point 0.0. Furthermore assume that f has vertical tangent planes on
the boundary of the region and that f(0,0) = f’(0.0) = 0. Thus the pair of
surfaces is symmetric with respect to the point (0.0.¢/2).

A straightforward computation of the normal vectors to the surfaces vields

(fe(ra.ya). f{ra ysa). 1)
Vit y)? + fu(caya)? +1

(fz(z8.yB). fy(£B, yB). 1) .
vV f(rB.ys)? + fy(rp.ys)* + 1

Solving n4y = ng vields (r4.y4) = (rg.yg). Thus the tangent planes of the

nay(ry.yq) =

ng(rg.ys) =

two surfaces are parallel when the (.r. y) coordinates are the same.

Solving ny-s4 =ny-(0.0.z4) for z4 vields

3.4=-l'fr+.'/fy—f'

Similarly solving ng-sg = ng- (0.0. zg) for z5 vields

sg=-rfr—yfy+f+ec

Solving z4 = zg vields z4 = 25 = ¢/2.
Thus the separating double tangent planes meet at the point (0.0.c/2).

Therefore by Corollary 7.4.5 above the measure of planes separating the two
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surfaces is the total absolute mean curvature of the envelope minus the total

absolute mean curvature of the caps. a

In Chapters 9 and 10 we will examine some particular examples of pairs of

surfaces with conical envelopes in greater detail.
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CHAPTER 8

SMOOTH CONVEX BODIES:

PRELIMINARY RESULTS

8.1 Introduction

A classical result in integral geometry is that the measure of planes inter-
secting a compact strictly convex body in R is equal to the integral of absolute
mean curvature over the surface of the body. See for example Ambartzumian
(1990. 120-122). This theorem inspired us to trv to show that the measure of
planes separating two disjoint compact smooth convex bodies in R? is equal to
the integral of absolute mean curvature over the envelope of separating double
tangent planes minus the integral of absolute mean curvature over the caps.

In other chapters we prove this conjecture for certain special cases. The re-
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mainder of this chapter represents our progress on and ideas for solving the

general case.

8.2 The Direct Approach

One possible approach to the general case that has worked well in some of
the special cases is to compute the integral of mean curvature and to compute
the separating measure and then try to equate the two integrals. Theorems
1.5.4 and 1.5.5 of Chapter 1 may be applied to directly integrate the measure

of planes separating two strictly convex bodies in R* as follows.

Theorem 8.2.1 Parametrize two disjoint compact strictly conver bodies A
and B such that the z-azxis contains a shortest line segment connecting A and
B and such that the closest points are (0.0.0) € 4 and (0.0.c) € B where
¢ > 0. Let sp and sg be the boundaries of A and B respectively. Let np(6. z)
denote the outward and ng(f. z) denote the inward unit normal vectors of sa
and sg respectively. Parametrize sy and sg by angle 8 of the r-axis with the
projection of the normal vector onto the ry-plane and intersection z of the

tangent plane with: the z-axis. Let 2(8) be the unique solution of

na(6.z) sa(f.z) = ng(8.z) - s(d. z).
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Then the measure of planes separating A and B is
1 [ [ , 2
3/ / [(nA(O. z)- (1.0, 0)) + (nA(O‘ z)- (0, 1.0)) ] dz df
=Jo Jo

1 28 pc T ) \
+'§/0 /:-(g) [(DB(O Z) . (1.0. 0)) + (nB(O’ Z) . (0 10)) ] dz db.

Proof. A necessary condition for two planes to be the same is that their normal
vectors be parallel. Furthermore by construction in order for a double tangent
plane to be separating the normals must be the same. Because the surfaces

are assumed to be parametrized by tangent planes this means that
na(64,24) = np(0s. 28).

which implies that 84 = 6g and z4 = 25. Thus we can drop the subscripts. A

second necessary condition that two tangent planes are the same is that
na(9, z) -sa(f.z) = ng(6. z) - sp(4, 2).

Theorem 4.7.1 implies that there is exactly one such tangent plane for each
angle . Thus the above equation has a unique solution z(6).

We parametrize planes in R by angle ¢ of the upward normal with the
z-axis, by abuse of notation z-intercept z, and by angle # with the r-axis of
the projection of the upward normal onto the ry-plane. According to Theorem

1.5.4 the invariant measure in these coordinates is cos ¢sin ¢ do dz d6.
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For fixed 6 and for fixed z < z() the separating planes will be bounded

by tangent planes to 4. The o-coordinate of such tangent planes will be
cos-l(n,\(e. 2)- (0.0, 1)).

Likewise for fixed 4 and for fixed z > z(#) the separating planes will be bounded

by tangent planes to B. The o-coordinate of such tangent planes will be
cos™! <n3(0. z) - (0.0, 1)).

Thus the measure of planes separating A and B is

2% pz(0) o6~ ! <m\(0.:)-(0.0.l))
/ / [ cososino do dz df
Jo Jo  Jo
2 ¢ cos = ! (05(0,:)-(0.0.1))
+/ / / cososino do dz df.
Jo  Jxey Jo

A straightforward evaluation of the integrals above vields the desired result. O

Theorem 8.2.2 Let sp and sg be the houndaries of disjoint compact strictly
convez bodies A and B respectively. Let (r.y.z) be a point in R*. Let the
z-axis he through a shortest line segment connecting A and B. Parametrize sp
by direction (0.0) of outward and sg by direction (8. ¢) of the inward normal
vector where o is the angle of the normal with the z-azis and 8 is the angle
with the r-axis of the projection onto the ry-plane of the normal. Let n(8. o)

denote the unit normal vector. Let o(8) be the unique solution of

n(f.0) -sa(0.0) = n(d.0) - sg(f. o).
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Then the measure of planes separating A and B is
2 rolf)
/ / n(6.) - (sa(8. 6) — sa(8.0)) sino do do.
o Jo

Proof. A necessary condition for two planes to be the same is that their normal
vectors be parallel. Furthermore by construction in order for a double tangent
plane to be separating the normals must be the same. Because the surfaces

are assumed to be parametrized by tangent planes this means that
na(f4.04) = np(fs. 0p).

which implies that 84 = g and 04 = 0g. Thus we can drop the subscripts.

A second necessary condition that two tangent planes are the same is that
n(f.0) -sa(f.0) = n(b.0) - sg(f. o).

Theorem 4.7.1 implies that there is exactly one such tangent plane for each
angle §. Thus the above equation has a unique solution o(8). In fact using
the implicit function theorem in exactly the same way as it was used in Step
1 of the proof of Lemina 7.2.2 one can show that o(6) is smooth.

We parametrize planes in R* by angle ¢ of the upward normal with the
2-axis, signed distance p from the origin, and by angle § with the r-axis of the
projection of the upward normal onto the ry-plane. According to Theorem

1.5.4 the invariant measure in these coordinates is sin @ dp d¢ df.
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For fixed 8 and for fixed ¢ < ¢(f) the separating planes will be bounded
by tangent planes to A and B. The p-coordinate of such tangent planes to A
will be n(4. ) -sa(6. ¢) and the g-coordinate of such tangent planes to be will

be n(4, ¢) - sg(f#. ). Thus the measure of planes separating A and B is

2t ro(8) rn(8.0)sg(0.0)
/ / / sin ¢ dp do df.
Q 0 n(#.0)-sa(¢.0)

A straightforward evaluation of the integrals above yields the desired result. O

For convenience the above theorems assumed compactness but that as-
sumption was somewhat stronger than was necessary. Compactness assures
the existence of points of separating double tangency.

The direct computation of the integrals of mean curvature for comparison
in the general smooth case proved to be more difficult and less enlighten-
ing. However this approach was successful for more specialized cases. This
approach was used with some success in proving the main conjecture for sur-
faces of revolution, a certain fourth order surface, and for a certain class of

paraboloids in the following chapters.

8.3 A Minkowski Difference Approach

Another approach that holds some promise for proving the main conjec-
ture is the Minkowski difference approach. The Minkowski difference of two

convex bodies A and B is the body formed by performing all possible vector
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subtractions of a point in A from a point in B. We can show that the measure
of planes separating two convex bodies in R* is equal to the measure of planes
separating the Minkowski Difference of the two bodies from the origin. Thus
we can reduce the general case to the case of planes separating a convex body
and a point which we already dealt with in Chapter 7. Partial results with
this approach are given below. The difficult step in this approach is to equate
the integrals of mean curvature for the original pair with the integrals of mean
curvature for the Minkowski difference and the origin.

We were inspired to try this approach when we came across a theorem that
stated that the set of linear functionals separating two convex bodics is the
same as the set of linear functionals separating the Minkowski difference from

the origin. See Thompson (1996. 47).

Theorem 8.3.1 Let 4 and B bhe convex hodies in R? or R3. Then the bound-
ary of the Minkowski difference may be obtained hy subtracting points on the

boundaries of A and B with opposite facing outward normal vectors.

Proof. We prove the theorem for R%. The proof in R? is similar. Fix a direction
(6.0). Let (6. 0) denote a unit vector with direction (. 0). Let s4 be a point
on the boundary of A. It is a property of convex bodies that each direction
is the direction of two support planes. Then because v - s4 gives the signed

distance of s4 from the origin. support planes must correspond to the extreme
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values of the signed distance from the origin. Therefore extreme values of the
signed distance from the origin occur on the boundaries of A and B. Thus in
the direction (6. ¢) the extreme values of the Minkowski difference will also be
on the boundaries of 4 and B. The vector points ir the direction of increasing
values of the signed distance to the origin. Thus the extreme values will occur

when the outward normals are opposite facing. a

Theorem 8.3.2 Let A and B bhe disjoint compact strictly conver hodies in
R3. Then the measure of planes separating A and B is equal to the measure

of planes separating the Minkowski difference M und zero.

Proof. The set of separating planes are bounded by the set of support planes.
Fix a direction (6. ©). Let p represent the signed distance from zero. The value

of p for the planes separating A and B varies from
N(0.0)- S4(6.0) to N(8.0) - Sg(8. o)
whereas the value of p for the planes separating M from zero varies from
N(6.9)-(0.0.0) to N(0,9¢) - Sp(h.9)
which simplifies to
0 to .N(8.9) - (Sg(f.0) - S4(6.0)).

Thus the set of planes which separate M and zero is a translation of the

set of planes which separate A and B. Thus, since our measure is invariant
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under rigid motions, the measure of planes separating A and B is equal to the

measure of planes separating M and zero. O

Lemma 8.3.3 The radius of curvature on the boundary of the Minkowski dif-
ference of two planar disks in parallel planes is equal to the sum of the radi

of curvature of the original two bounding circles.
Proof. Without loss of generality parametrize the circles
3,.1(0) = (I‘_.l Cos 0'4, ry sin 9‘4, 0)

sp(0) = (e + rgcosfg.b+ rgsinfp.c).

By Theorem 8.3.1 the Minkowski difference may be obtained by subtracting
points on the circles with opposite facing outward normals. We note that the
normal vectors are pointing in opposite directions when g = 64 + . Thus

we compute

3g(0) —sa(@+7)=(a+(ra+rg)cosf.b+ (rq +rg)sinb.c).

Lemma 8.3.4 The rudius of curvature of the Minkowski difference of two
strictly convez planar curves in parallel planes is equal to the sum of the radii

of curvature of the original two curves.
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Proof. Label the two curves as and ag. Orient ap with outward pormal
vectors and apg with inward normal vectors. Identify parallel directions in the
parallel planes. Write a, and ap as functions of the angle v of the normal
vector. Since ap and ap are strictly convex at a point vy we can approximate
aa and ag with circles c, and cg which agree with a5 and ag respectively
at vg up through the second derivative.

Because the radius of curvature depends only on the first two derivatives.
the respective radii of curvature also agree. Let r4 and rg denote the respective
radii of curvature.

Let ay and cy denote the Minkowski differences of the original curves
and of the two circles respectively. Then by the linearity of the derivative on
functions. the Minkowski differences an and ¢y agree at vp up through the
second derivative. Therefore again since the radius of curvature depends only
on the first two derivatives. the radii of curvature of ayg and cyg are the same.
Since the radius of curvature does not depend on a particular parametrization.
by Lemma 8.3.3 the common radius of curvature at the point vy is ry + rg.
Since vy was arbitrary, the radius of curvature at each point of ay is equal to

the sum of the radii of curvature of the original two curves. a
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Lemma 8.3.5 The radius of normal curvature of the Minkowski difference of
two disjoint conver bodies in R® is equal to the sum of the radii of normal

curvature of the original two bodies.

Proof. Let A and B denote the bodies. Parametrize the boundaries s, and sg
by the angles (6. 0) of the normal vector. Since s, and sg are parametrized
by the normal vector. the tangent planes for a particular value of (6. o) are
parallel. Identify parallel directions in the parallel planes. Let { represent a
direction in the tangent planes. Then the normal sections in the direction ¢
through each tangent plane are convex curves in parallel planes. Therefore by
Lemma 8.3.4 above the radius of normal curvature of the Minkowski difference
at the point (4. o) in the direction ¢ is equal to the sum of the radii of curvature

of sp and sg at the point (6. o) in the direction (. C

Conjecture 8.3.6 The mean principle radii of curvature of the Minkowski
difference of two disjoint strictly convez bodies in R® is equal to the sum of the

mean principle rudii of curvature of the original two bodies.

If the conjecture is true then it would follow that the total absolute mean
curvature over the cap of the Minkowski difference is equal to the total absolute

mean curvature over the caps of the original surfaces.
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A somewhat different approach would have to be taken to equate the total
mean curvatures over the envelopes because we can’t assume that the principle

radii of curvature on the envelopes are finite.

Theorem 8.3.7 Let A and B be two disjoint compact strictly convez bodies in
R3. Let (x,y, z) denote a point in R®. Place the z-aris through a shortest line
segment between A and B. Let np(0.®) denote the upward and ng(f. o) denote
the downward unit normal vectors of sp and sg respectively. Parametrize the
respective boundaries sy and sg by direction (8. ¢) of the outward and inward
normals respectively where o is the angle of the normal vector with the z-axis
and 0 is the angle with the r-azis of the projection onto the ry-plane of the
upward normal vector. For a fized 0 let &(6) represent the angle with the :-
azis of the normal vector of the separating double tangent plane. Then for

0<60<2r and 0 < t <1 the envelope of the original surfaces is given by
(6.t) — 54(8.6(6)) + t(s5(8.6(8)) — s4(6.9(9)))
and the envelope of the Minkowski difference and zerv is given by
(6.t) — t(s5(6, 6(6)) — sa(8, 6(6))).

Proof. Let o(6) denote the function given by Theorem 8.2.2 expressing ¢ as
a function of § at points of separating double tangency. Thus sg(f.o(6)) and

sa(0, ¢(8)) are corresponding points of separating double tangency. Thus the
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envelope for the original two surfaces is
(1 —t)ss(8.0(8)) + tsg(8.0(8))

= s4(0.0(8)) + t(sa(8. 0(8)) — s.4(6. 0(8))).

Also by Theorem 8.3.1 the surface of the Minkowski difference is given by
8_11(0. o) = .5‘8(0. 0) - S:‘(g. o).

Because of the linearity of derivatives and dot products. the normal vector
n(f. o) of the original surfaces will be orthogonal to both coordinate curves of
the difference and thus normal to the difference. Thus the separating double

support planes for the Minkowski difference and the origin must satisfy
n(ﬂ (.9) . S"[(G. 0)=0.

Then replacing sy by sg — s4 vields the equation for &(f) given by Theorem

and zero are sg(f.0(f)) — s4(f.9(0)) and zero. Thus the envelope for the

Minkowski difference and zero is

(6.£) — t(s5(0.0(8)) — s4(6.0(9)).

a

Remark 8.3.8 As is apparent from the formulas, the envelopes of Theorem

8.3.7 are unions of straight lines. For fized 6 the equation of the envelope
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reduces to the equation of a straight line. Such surfaces are called ruled sur-
faces. The straight lines are called the rulings of the surface. See for example
Do Carmo (1976, 188-197) especially the discussion on pages 195 to 197 of
the envelope of the family of planes tangent to a surface along a curve of the

surface.

8.4 Stokes’ Theorem Approach

A third approach that holds some promise is a Stokes’ Theorem approach.
The set of planes separating two disjoint compact convex bodies A and B is
bounded by the set of separating double support planes and also by the single
support planes of the caps of A and B. Thus by a general Stokes’ Theorem we
can integrate over these bounding planes rather than the separating planes.
Hopefully the integral over these bounding planes can then be equated with a
mean curvature integral over the points.

Alternatively one could possibly identify the separating planes with points
bounded by the envelope and caps and then apply Stokes” Theorem to equate
the integral over these points with an integral over the boundary. Hopefully
this integral over the boundary would turn out to be the total absolute mean

curvature.
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A difficulty in taking a Stokes’ Theorem approach lies in finding an expe-

ditious way of identifying planes with points.

8.5 Approximation by Polyhedra

A fourth possible approach to the general smooth case would be to approx-
imate a pair of smooth convex bodies by polyhedra and taking the limit as the
polyhedral pair approximates the smooth pair.

We tried this approach numerically for the measure of planes hitting a
sphere. We parametrized the sphere by direction (6. o) of the normal vector.
The measure of planes hitting a polyhedron with vertices at (6/n.¢/n) was
numerically fairly close to the measure of planes hitting a sphere.

A difficulty in taking the polyhedra approximation approach lies in showing

that the limit of the wedge functions is mean curvature.
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CHAPTER 9

PLANES SEPARATING

COAXIAL SMOOTH

COMPACT SURFACES OF

REVOLUTION

9.1 Introduction

[n this chapter we will compute the measure of planes separating a pair
of disjoint compact convex bodies A and B (with non-empty interior) whose

boundaries are coaxial smooth surfaces of revolution in R® with parametriza-
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tions of a certain form. We will show that the measure of planes separating
the two convex bodies is the integral of the absolute value of the mean cur-
vature over the portion of the envelope of separating double tangent planes
that is bounded by the two bodies minus the integral of the absolute value of
the mean curvature over portions of the boundaries of the two bodies that are
bounded by the envelope.

Part of the proof given below involves showing that the set of tangent
planes meet in a point. Thus the results of the Chapter 7 may be applied.

However here we will prove the result for this special case independently.

9.2 The Cylindrical Parametrization

Let (r.y. z) denote rectangular coordinates in R* and let (6. p) denote po-
lar coordinates in R2. The boundaries of the convex bodies A and B will be
parametrized in R® as the graphs of the height functions of the polar coordi-

nates.

Definition 9.2.1 The cylindrical parametrization of the boundaries of a
pair of disjoint compact convex bodies A and B whose boundaries are coazial

smooth surfaces of revolution is defined as follows. The boundary of the lower
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body A will have a parametrization s, : [0,27) x [0,a] — R® of the form

(9.2.2) sa(f.p) = (pcosb, psin b, f4(p))

where 0 < a < x and f4 : [0.a] — R is twice differentiable, strictly con-
cave (i.e. f"(p) < 0 for all p), and satisfies f4(0) = lim, o- f4(p) = 0 and
lim, - fi(p) = —x.

Similarly the boundary of upper body B will have a peremetrization sg :

[0,27) x [0, 3] — R® of the form

(9.2.3) sg(f.p) = (—pcosf. —psinb.c - fg(p))

where 0 < 3 < x. 0 < ¢ < x. and fg : [0.3] — R is twice differentiable.
strictly concave, and satisfies fg(0) = lim, o- fg(p) = 0 and lim,_4- fg(p) =

—00.

Remark 9.2.4 Thus f4. f. fg, and fg are all nonpositive on their domains

and strictly decreasing.

Remark 9.2.5 Thus A is contained in the half-space {(r.y.z) € R*: z < 0}
because the z-coordinate of points on the boundary of A is f4 < 0. Likeurise B
is contained in the half-space {(x.y.z) € R®: z > c} because the z-coordinate
of points on the boundary of B is c — fg > c. Furthermore c is a separation

parameter representing the distance between A and B.
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Remark 9.2.6 Furthermore s, is bijective everywhere except at points where
p =0 andsa~'(0.0.0) = {(8.p) : p=0}. Likewise sg is bijective everywhere

ezcept at points where p = 0 and sg~*(0.0.0) = {(6.p) : p = 0}.

Lemma 9.2.7 If A and B are two disjoint compact conver hodies whose
boundaries are smooth coarial surfaces of revolution unth cylindrical parametriza-

tion then A contains the set

{(x.y.2) e R : Vrt+ y?* < a and fa(a) < z < fa(\V/r2 + y?)}
and B contains the set
{(ry.2eR:rt+y? < Jandc— fa(yrt+y?) < : < e — fg()}

Proof: First note that the .r-coordinate and the y-coordinate in the cylindrical
parametrization are pcosf and psiné respectively. Thus r = pcosé and
y = psin§. Solving for p yields p = \/m Thus the constraint 0 < p < o
becomes 0 < \/ﬂ_q7 < a.

For 0 < p < a the point (pcosf. psinb. f4(a)) € A because A is convex and
because the point (pcosé. psin 8, f4(a)) is on the line segment connecting the
boundaryv points (acosf.asinf. fi(a)) and (a cos(6 + 7). asin(f + 7). fi(a)).
Thus for 2 satisfying fi(a) < z < f4(p) the point (pcosé. psinf. z) € A be-

cause it is on the line segment connecting (pcos#f. psinf. f(a)) and
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(pcos @, psin, fa(p)). Substituting \/x? + y? for p then implies that A con-
tains
{(r.y.2) e B : V2 +y? < aand fy(a) € = < fa(Ve2 +y9)}

By a similar argument B contains the set

{(r.y.2)eR: Vet +y? < 3and c— fp(Vrt+y?) < 2 <e— fa(IN}

9.3 The Set of Separating Double Tangent

Planes

Lemma 9.3.1 If A and B are disjoint compact conver bodies whose bound-
aries are smooth coarial surfaces of revolution with a cylindrical parametriza-
tion then a necessary and sufficient set of conditions for points (64, p4) on the
boundary of A and (8g.pg) on the boundary of B to be points of tangency for

the same plane are

(9.3.2) (64, filpa)) = (08, f5(ps))
(9.3.3) Fipa) = falog) = fA(PALj-{.B‘fZB) -c
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Proof: Applying standard calculus and linear algebra techniques to equations
9.2.2 and 9.2.3 above we compute first the tangent vectors to the coordinate
curves

Sa9 = (—pasinb.. p4ycosfs.0)
Sap = (cos04,sin b4, fi(pa))
sy = (pgsinflg. —pgcosfg.0)
s, = (—cosfp, —sinbg, —fi(pa))

and then the upward unit normal vectors

(934)  A(Ba.pa) = (= fi(pa) cosba. ~ fi(pa)sinda. 1)/y/ 1+ (Fy(pa))?

(9.3.5) ng(fs.ps) = (—fg(ps)cosbp. - fp(ps)sinbs. 1)/\/’1 + (fglpe))?

at points (84, p4) and (6g, pg) of the boundaries of A and B respectively.
Note that n 4 is an outward normal to surface A and that ng is an inward

normal to surface B. Thus we have chosen orientations for the two surfaces so

that for a separating double tangent plane the two unit normal vectors n, and

nq must be the same. Then solving np = ng yields the necessary condition

(4. fa(p4)) = (5. fa(ps))-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

Next we compute the dot products
na-sa = (—pafi(pa) + falpa))/\/ 1+ Falpa)?

ng -sg = (pafp(ps) +c - fB(PB))/\/l + fe(pe)?.
Then solving the equation nu - sa = ng - sg vields a second condition

falpa) + folps) — ¢

Filpa) = Sylps) = P ZIEL

necessary for a pair of points on the surfaces to have a tangent plane in com-
mon. From basic linear algebra the two necessary conditions are also sufficient.

a

Lemma 9.3.6 [f A and B are disjoint compact convez bodies whose bound-
aries are smooth coazial surfaces of revolution with a cylindrical parametriza-

tion then the equation

' _ _ falpa) + felpB) — ¢
f.-l(l).-l) = fg(/)a) = ot s

has a unique solution (p ,,.pg,)-

Proof: Restricting s5 and sg to the rz-plane by taking 4 = g = 0 vields

two planar curves

pa — (pa.0. fa(ps)) and

pB — (—pg.0.c - fa(ps))-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

Then using basic planar analytic geometry the expression

falpa) + falps) — ¢
Pa+pB

which appears in equation 9.3.3 above is just the slope of the line through
pairs of points (p4, 0, fa(pa)) and (—p4,0,c ~ fs(pg)) on the two curves and
fi(p4) and fg(pg) are the slopes of the tangent lines to the curves. Thus the

condition

fipa) = filps) = ﬁ-t(PA)p:‘-{-Blf:B) -c

is equivalent to p4 and pg being points of tangency to a separating double
tangent line.

Since f4 is strictly concave then f! is strictly decreasing and therefore has
a strictly decreasing inverse f,~! : (—2c.0] — [0.a) mapping a slope m to a
point on the r-axis p. Furthermore the strict concavity of f1 and the fact that

".(0) = 0 implies that f,"}(—oc.0) = (0.a).

Likewise since fg is strictly concave then fg is strictly decreasing and
therefore has a strictly decreasing inverse fp~!: (—x.0] — [0.:J) mapping a
slope m to a point on the r-axis p and fg~!(—00,0) = (0. 3).

Letting m = f)(pa) = fp(ps) the condition 9.3.3 is equivalent to the

condition

m = falpa) + fe(pB) — ¢
pa+pB ’
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Thus m must satisfy

= falfa ) + fa(fmH(m)) — ¢
Fi7Ym) + fp=t(m) :

Letting M : R — R be defined by

_ falfi7H(m)) + folfp~ (m)) ~ ¢

R ) =
I(m)=m Ftm) + fyT(m)

the above condition is equivalent to M = 0. Note that since f|~' and fj~'
are continuous and positive on (—20.0) and since f4 and fg are continuous

[0.a] and {0. 3] respectively then M is continuous on (—>.0). Furthermore

im M= lm m— fallimpg .o ff,'l(m)) + fp(limy,—_x fé‘l(m)) —c

e e i f5 =1 (m) + i f5~1(m)
S+ fs =
o+ 3
and

f.»t(ﬁmm—.o— ff\‘l(m)) + fB(]-imm—-O‘ f'B_l(m)) —-C

lim M= lim m~ :
m—0- m—0- m lim,,,...o- f,,l—l(m) + umm—-()‘ f,B-l(rn)
fa@) + fe(0)—c ¢ _
=0- 0t = 0—+ = 2.

Thus the lim,,_._. M = —x and the lim,,_o- W/ = x Therefore the Inter-
mediate Value Theorem guarantees that M = 0 for some value mq in (—2c. 0).
Thus there is a tangent line corresponding to the slope mg.

To prove uniqueness suppose that in (—oc.0) there are two solutions mg

and m;. Without loss of generality assume that mg < m,. The equation of
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the tangent line with slope my is

2(p) = falfy~(mo)) + mo(p — £3™"(ma)).

It is a property of convex bodies that the body is contained in one of the two
closed half-planes determined by a support line. Taking (0.0, f4(a)) as a test

point implies that the lower body is contained in the half-plane

2 < falfy7 (mo)) + ma(p — f4~"(mg)).

But since both f4 and f} are strictly decreasing then my < m, implies

[y~ (my) < f4,~'(mp) which implies
falfy™ m) > falfi™ (ma))
= fa(fa~" (mo)) + mo(f ™" (mo) — f4™"(ma))

> fa(f47'(ma)) + mo(f3~ (1) = £47"(mo)).

Thus the point (f4~!(m;),0, f4(f,~!(m;))) is a point on the boundary of the

lower body A that is contained in the upper half plane

2> fa(f4™"(mo)) + mo(p — fi " (myg)).

This is a contradiction. Therefore there is a unique separating double tangent
slope mq in (~00,0). Thus p,, = f,~(mo) and p,, = f4~"(m). This proves
the lemma for the case where § = 0. The lemma is true for arbitrary 4 by

rotational symmetry. a
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Corollary 9.3.7 If A and B are disjoint compact convez bodies whose bound-
artes are smooth coazial surfaces of revolution with a cylindrical parametriza-
tion then the locus of the set of separating double tangent points on A is a

simple closed curve given by the formula

6 — (p'w cosf, Pao sin @, fA(pAo))

and the locus of the set of separating double tangent points on B is a simple

closed curve given by the formula

6 — (—pgecosb. —p,,sinb,c— fg(pg,))-

Corollary 9.3.8 If A and B are disjoint compact conver bodies whose bound-
aries are smooth coarxial surfaces of revolution with a cylindrical parametriza-
tion then the set of separating double tangent planes is the set of all planes

which may be represented by equations of the form

na(0.p,,) (z.4.2) =na(d.p,,) - sa(f.p,,) or equivalently

ng(d. pg,) - (£.y.2) = nB(8.p,,) - sB(f. pg,)-

Theorem 9.3.9 If A and B are disjoint compact convez bodies whose bound-
aries are smooth coaxial surfaces of revolution with a cylindrical parametriza-

tion then the set of separating double tangent planes intersect in the poini

(0~ 0. -p.mf:i(f’,‘o) + fA(p.Ao)'
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Proof: Let (z,y,z) € R®. We compute the dot products

—(rcosf+ ysinb) fy(p,o) + 2

na(f.p,) (r.y.2)= —
vV 1+ f.-l(p.m)z

—PaofalPao) + fa(p o) .

IJA(O' p,m) : SA(G' pao) = \/1—+—fT(p—)—2
AW 40/

Solving for z then yields

and

s = (rcosf + ysinf - P.w)f:\(l)m) + falpao)-
Then computing 2 for § = 0.7.7/2. 37 /2 gives the values listed in Table 9.3.

Table 9.1: Some Separating Planes for Surfaces of Revolution

Angle Equation of Plane
0 2=(r = p ) filPie) + falp o)
T t=—(c+ /)Ao)f.,%(l’.-m) + f%(l’ao)
/2 2=y - p)filPa) + falpie)
In/2 2=~y +p)filpi) + falpy,)

Then setting the first two expressions for : equal gives the equation

(;L‘ - p,m)f.f{(pm) + f-‘l(p,m) = _(I + p,\o)f.{i(p,\a) + f.-l(p_w)'

Then solving for r implies & = 0. Then setting the above two expressions for
z equal and solving for y implies y = 0.
Next we replace r and y by 0 in the expression for z to give z = —p , fi(p,,)+

fa(p.o)- Thus these 4 separating double tangent planes meet in the point

po = (0.0.—p, fi(p,) + falp,))
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Thus the set of all separating double tangent planes meet in at most the single
point pg.

Finally we compute

DA(a. p.-\o) P = -—p-ﬂi%\/—;?‘%[ij)g)ﬂ)- = nA.(g' p,\o) : SA(O, p,\o)

which shows that the point py lies in all of the separating double tangent
planes. Thus the set of separating double tangent planes meet in the point

Po- O

9.4 The Envelope of Separating Double Tan-
gent Planes

Theorem 9.4.1 If A and B are disjoint compact convez bodies whose bound-
aries are smooth coaxial surfaces of revolution with a cylindrical parametriza-
tion then there is an envelope of separating double tangent planes which may

be parametrized by s : [0.27) x (—oc,00) — R® given by s(d.t) =

(((1 —t)p,(o —tpao) 0060, ((1 _t)p,.m -tpso)smo' (1 —t)fzi(p,4o)+t(c— fB(Pao)))

where (p,,, pg,) 13 the unique solution of

_ fa(pa) + fBlpB) - c

filpa) = folps) o1t Pp
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Proof: According to Lemmas 9.3.3 and 9.3.6 above there exist unique numbers
P and pg, such that for all values of 4 the points (6. p,,) on the boundary
of A and (6, p,,) on the boundary of B are corresponding points of double

tangency. Specifically

' Y _ fA(p,w) + fB(pao) —-C
(9'42) f.—t(p.m) - fB(pao) - P + P .

Now let S be the image of the map s : [0.27) x (—oc. ) — R3 given by

s(8,t) =

(((1 - t)p.m - tpao) cosf. ((1" t)pAo - tpso) sin§. (1 - t)f.-l(p.w) +t(c"' fB(pao)))-

We check that the set of tangent planes of S coincides with the set of separating
double tangent planes of the boundaries of A and B as follows. The tangent

vectors to the coordinate curves of S are
Sg(o, t) = (((t - I)pAO + tpeo)sm 6, ((1 - t)p,\o - thO)COS 6. 0)

82(0' t) = (—(p,‘o + pso) cos f. —(p.-to + pao) sinf.c - f.'i(p,\o) - fB(pau))'

Thus the normal vector is

c=falpy0)—f8(Pgy) 9 ce=falpyo)-falppy) _-
( PaotPao coso. PiotPao sinf. 1

n(6.t) =

2
C—f.a(P,n)—/a(Pan))
\/1 + < PsatPpo

Thus, using equation 9.4.2 above,

0(6.1) = (~ f4(pa0) 088, — f4(p,5) 510 8.1)//1 + (F4(p,5))?0A (8. p,,) and
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n(9. t) = ("‘fIB(pao) (.'050, _f’B(pao) sin 6. 1)/\/1 + (le(pﬂo))an(gv pao)'

Thus the set of normal directions of S is exactly the set of normal directions
of the separating double tangent planes to S, and Sg.
Furthermore

((1—t)pw—tpao)_—ﬁ§i?:__p£_jm+(l—t)fﬂ .|o)+t(c—f8(pﬁo))

n-s= S RN
e=falpyg)—f8lPpg) )
¢1+ P FPao

—(1— \ c - f.'l(p.m) - fB(Pao) c—- f.'\(/).w) - fB(pBO) :
- (1 t) (f:u(p,\o)+p.w P + Pro )/\/;- ( P + Pao )

Falp) + fB(pae — c))/\/l + ((: — falp,) — fB(/)m,)>2‘

P T Pao Pt Peo

+t (c—fB(pBo)+pso

Thus, again using equation 9.4.2 above.
05 = (1= 0 =pufiloa) + falor )y 1+ Ua(o?

+t(paof2i(pso) +c- fB(pao) IV 1+ (Fa(pao)?
= (1 - t)n(6. pm) -84(6. p'm) + tﬂg(e.peo) . SB(9~I)BQ)-

Thus. since ny = ng at points of double tangency we have

n-s= n.&(9~p,m.) : 5_4(9.;)‘_‘0) = np(f. peo) -sg(6. Pga)-
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9.5 Direct Computation of Measure of Sepa-

rating Planes

Theorem 9.5.1 If A and B are two disjoint compact smooth convez bodies
in R® whose boundaries are smooth coazial surfaces of revolution and have a

polar parametrization, then the measure of planes separating the A and B is

cx [T __efilo) a0 pfg(p) }
"[ */o 1+(f.'4(p))"dp+/o T+ (LR

Proof: Recall the equations 9.3.4 and 9.3.5

na(f. p) = (~fi(p) cos 8. - fi(p)sinb.1)/\/1 + (f4(p))?

na(f. p) = (~f3(p) cos 8. - fy(p)sin . 1)/\/1 + (fi(p))?

of the equations of the normal vectors to S4 and Sp respectively. Projecting

n4 and ng onto the ry-plane and normalizing vields vectors
Projna = projup = (cosf,sin 4, 0).

Thus the angle of the z-axis with projn is §. Likewise the angle of the r-axis
with proj.g is 6.

Let (z.y, z) denote a point in R3. One can coordinatize almost all planes
in R with coordinates (6. ¢, z) where ¢ € (0. ) denotes the angle of a normal

to the plane with the z-axis and 8 € (0, 27) denotes the angle of the projection
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onto the ry-plane of a normal to the plane with the r-axis and by abuse of
notation 2z denotes the point where the plane hits the z-axis. In these coordi-
nates the measure of the set of planes in R® has density cos ¢ sin phi do df dz.
See Ambartzumian (1990, 53).

Find the z-coordinate of the point where the envelope intersects the z-axis
as follows. Solving (1 —t)p,, — tp,, = 0 vields t = —£4¢ which implies that

PiotPro

the z-coordinate is

co = peof:l(pw) + [J.m(C - fB(pao))'
Pao T Pao Pt Pgo

For 25 < ¢ find the p-coordinates of the separating planes by solving ns -sa =

ny - (0.0. z). This simplifies to an equation

Fi(pa) = fa(pa) - 20
Pa

We will now show that this equation has a solution. Define a function F :
(0.a) = R by
F(pa) = falpa) - falpa) = %
P
Note that F' inherits continuity from f4 and that lim,, o~ F(p4) = oc and

limy, .o- F(pa) = —oc. Therefore by the Intermediate Value Theorem F(p.) =

0 for some p, € (0.a).
We will now show that the solution p. is unique. Suppose there is a second

solution p.o. Without loss of generality assume p, < p.,. Then since f4 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



159

concave f4(p:) > fi(ps2). Since the only restriction on 64 and 6p is that
64 = 0 we can take §4 = g = 0 and consider tangent lines z = f,(p.)p + 2o
and z = f(p.2)p + 20 to the curve p — (p,0. f4(p)) in the rz-plane. Since the
curve is concave it can be extended to form the boundaryv of a convex body in
R?. It is a property of convex bodies in R? that the body is contained in one
of the half-planes with boundary bounded by a tangent line. Taking (0.0.0)
as a test point this implies that all points z in the convex body must satisfy
2 < filp=2)p + 20 But fa(p:) = filpe)p: + 20 > filp2)p: + 2. Thisis a
contradiction. Therefore the solution p. is unique.

Then using elementary trigonometry one can show that the o-coordinate

of the tangent plane through a point with p-coordinate p. is

) VIt (filp))?

Similarly for z > ¢

0. =cos~! ( ._____._-I'B(p:) ) .
) v 1+ (felp:))?

Using the symmetries of surfaces of revolution yields the measure of the planes

separating 4 and B as

co g T/2 c ry /2
2 / / / cos o sin ododfdz + 2 ] / / cos o sin ododfdz.
0 o i co JO [~H

This simplifies to

14 1 C 1
— —_—dr - —_—dz }.
Tr<c /o T+ (Falp)? /co 1+(f§3(pz))2d )
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A change of variables z = f(p) — pf'(p) then yields

Pro pfilp) Peo pfp(p)
i [*/ T+ (f4 () "”’“/o T o]

9.6 Integral of Mean Curvature

Theorem 9.6.1 Let A and B be disjoint compact smooth bodies in R® whose
boundaries are coazial surfaces of revolution and have a polar parametrization.

Then the measure of planes separating A and B is

(9.6.2) |H|dS - ;mds

Se
where H s the mean curvature, Sg is the portion of the envelope bounded by
the points of tangency, Sc is the union of the two caps. and dS is the measure

of points on the surfaces.

Proof: Note that the set of points of tangency to the boundary of A can
be parametrized by restricting the p-coordinate of s, to p,, to get a dif-
ferentiable simple closed curve on the boundary of A given by the formula
0 — (p, cost,p,, sind, fa(p,,)) where 8 € [0,2r). This curve separates the
boundary of A into two sets, one with points whose p-coordinate are greater
than p,, and one with points whose p -coordinates are less than p,,. A similar

argument can be made for the points of B. Thus S¢ is well-defined.
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We compute the integrals of formula 9.6.2 using local coordinates and basic
differential geometry. See for example Do Carmo (1976). Let E.F. and G be
coefficients of the first fundamental form for the envelope Sg. Then in local

coordinates on the envelope

'Hl - c—- f-‘\(p,qo) - fB(pao)
2VEG - F?

and thus

1 T
/ \H|dS = / / \H|VEG = F2dfdt
Se 0 0

U 2. _
003 = [ [ Il Il ipis = n(c - fuip.0) - Fooue)

Now let E.F. and G be coefficients of the first fundamental form on the cap

of A. Then in local coordinates on this cap

| = ZA)+ (fi(p))?) = ofilp)

21+ (i) IWEG-F2
Thus the integral of the absolute value of mean curvature over the cap Sc, of
Ais

Pao [2F
/ \H|dS = / / \H|VEG = Fedfdp
Sca 0 0
o0 pfilp)

9.6.4) =7 [— _ / _plad) } .
( fA(pAo) A 1+ (ff{(P))z P
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Similarly the integral of the absolute value of mean curvature over the cap

SCB of B is

PN
(9.6.5) /S-n[ folbas) = | 1+(ff3(p))2dp]'

Then adding and subtracting equations 9.6.3. 9.6.4. and 9.6.5 above gives

/ |H|dS - !H1JS=/ \HldS - [ |H|dS - [ |H\dS
Sg Se Sg Sexa

SeB
P a0 " PBo "
=rlon [ e [ ]
This is the same as the measure of planes separating 4 and B by the results
of Section 9.5. g
The main reason for the assumption of compactness is to assure the exis-
tence of the envelope. For noncompact surfaces of revolution. if the envelope
exists. the rotational symmetry of the original pair of convex bodies will force
the envelope to be symmetric and thus conical. Thus by the comment fol-
lowing Theorem 7.4.3 the conclusion of Theorem 9.6.1 is true for noncompact

surfaces of revolution provided the envelope exists.

9.7 Examples

Example 9.7.1 Let A and B be a pair of balls whose boundaries are parame-

trized as above using fa(p) = /7 — #2 = ra. felp) = \/r5—p* — rg and

c=d—rq—rg where ry and rg are the radii of the balls and d is the distance
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between the centers of the balls. Then a straightforward calculation using the

above formula gives the separating measure as

n(d—rqa—rg)?

d

Figure 9.1: Two Spheres and the Envelope

Example 9.7.2 Let A and B be bounded by a pair of ellipsoids of revolution
parametrized as above using fo(p) = fa(p) = 2\/a? —b wherea > b. Then
with the help of the Maple mathematical software and the above formulas the

separuting measure was computed to be

_ {c L , m_l( ~2¢(2a® + be)VaZ — B2 ) }

4a* + 4a%bc — a?c? + 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

Taking the limit as a — b* then gives

c2

T
c+2a

which is the measure of planes separating two spheres of radius a and of dis-

tance c apart and agrees with Example 9.7.1 above.

Example 9.7.3 Let A and B be bounded by a pair of paraboloids of revolution
parametrized as above using f4 : [0,00) — R defined by fo(p) = —ap?, fa:
[0.0c) — R defined by fg(v) = —bp* where a > 0 and b > 0. Although the
domains of fa and fg in this case are infinite the above proofs remain valid

and the separating measure can be calculated from the above formulas as

a+b dabe
w[c- 1ab 1n(1+——a+b .
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CHAPTER 10

SEPARATING MEASURE

FOR A SPECIFIC FOURTH

ORDER SURFACE

10.1 Introduction

The specific smooth pairs of convex bodies we have studied up to this point
have been second order surfaces of revolution. In this chapter we will study
the measure of planes in R® separating a specific pair of fourth order surfaces
which doesn’t have rotational symmetry but has enough symmetry that the
envelope is a cone. The computations were more difficult for this example but

the principles remain the same.
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10.2 Mean Curvature Integral

Theorem 10.2.1 Letc > 0. Let A be a body whose boundary is parametrized
by sa(z,y) = (z,y, —z' —y*). Let B be a body whose boundary is parametrized
by sg(z,y) = (—r.—y.x* + y* +c). Then the integral of absolute mean curva-

ture over the envelope is

/(f.'_;)"" 32r%(9z% + 42 + 9,/c/6 — %) dr
0

3(c/6 — 241 7A(162° + 1 + 16(c/6 — L2)72)

Proof. At a point s4(z4,y4) the upward normal to the first surface

n _< dry 4!14 __________)
PN\ VT 1625 + 1645 1+ 1625 + 1655 /1 + 1625, + 1640,

At a point sg(rg,yg) the upward normal to the second surface

ng = ( 4% 4yB )
VI+ 1625 + 1645 /T + 1625 + 1643 m
Setting n4 = ng yields 4 = g and y4 = ys.

By symmetry it suffices to integrate eight times the absolute mean curva-
ture over one eighth of the envelope. Thus we can restrict values of (z.y) to
{(z.y):0< £ < y}. Solving n4-s4 = ng-sp yields y = (c/6 — x*)"/*. Setting
£ =y then yields = (¢/12)'/4.

Then replacing y with (c/6 — z*)!/4 in the respective formulas for s4 and
sp yields pairs of tangent points (r,(c/6 — r*)'/4 —c/6) and (—z,—(c/6 —

z%)!/4,7¢/6). The line through corresponding double tangent points may then
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be parametrized
t — ((1—2t)z. (1 - 2t)(c/6 — £*)/* (8t — 1)c/6).

Thus for {(x,) :0<t <1 and 0 <z < (c/12)'/4} the envelope may be

parametrized by
env(r.t) = ((1 = 2t)x. (1 = 2t)(c/6 — £*)/*. (8 - 1)¢/6).

Letting H represent the mean curvature of the envelope and dS an element

of surface area on the envelope. a long but straightforward computation then
vields

1 12(Qp2 p —
|H|dS = L2022 4 4 0ef6-rh)
3(c/6 — r)1/4(1628 + 1 + 16(c/6 — r)3/2)

Thus the integral of absolute mean curvature over the envelope is
/(ﬁ)‘“ l 322%(922 + 4¢2 + 9,/c/6 — %) itds
0 o 3(c/6 — r)V4(1628 + 1 + 16(c/6 — r*)3/2)

B -/‘(é)m 3222(922 + 42 + 9,/c/6 — %) A
= A 3(6/6 — I")l/“(lﬁmﬁ +1+ 16(6/6 _ :4)3/2) .

a

Theorem 10.2.2 Letc > 0. Let A be a body whose boundary is parametrized
by sa(z.y) = (z.y, —1* —y'). Let B be a body whose boundary is parametrized
by sg(z,y) = (-, -y, z*' +y* +c). Then the integral of absolute mean curva-

ture over the caps is

(/O ple/B=z) 8(22 4 1622y5 + 12 + 162%y2)
dydx.
0 0

T+ 1625 + 165
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Proof. By symmetry it suffices to integrate eight times the absolute mean
curvature of the cap of s4 over the first quadrant. Noting that the cap is
bounded by the set of points of double tangency and setting n4- s, = ng- sg
yields &' + y* = ¢/6 Thus the domain of integration will be {(r.y): 0 < y <
(¢/6 — 2140 < r < (¢/6)'/4}.

Letting H represent the mean curvature of the cap of s4 and dS an element.

of surface area on the cap of s4. a straightforward computation then vields

6(r? + 16:%y5 + r? + 16:52)

|HdS = 1 4 1606 + 1645

dydr.

Thus the integral of absolute mean curvature over the caps is

(c/8)'/* ple/6~zH)!! 48(r? + 1622%y8 + r* + 16x5y?)
dydr.
0 0

1+ 1626 + 1645

(]

10.3 Direct Measure

Theorem 10.3.1 Letc > 0. Let A he a body whose houndary is parametrized
by sq(r.y) = (z.y. —1* —y?). Let B be a body whose boundary is parametrized
by sg(x.y) = (—z.—y,z* + y* + ¢). Then the measure of planes separating A

and B is

2x pe/2 162372
/ / - —75 dz df.
o Jo 162324 3/3(sin?? 0 + cos/3 §)3/2
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Proof. Coordinatize almost all planes in R* with coordinates (¢, 4, z) where
¢ is the angle of the upward normal vector with the positive z-axis. § is the
angle of the projection of the upward normal vector onto the ry-plane with the
positive r-axis, and z is the intersection of the plane with the z-axis. Note that
the letter z is used here in several different ways but hopefully the meaning
will be clear enough from the context. In 8z¢-coordinates the motion-invariant
measure on the set of planes in R® is given by Ambartzumian (1990. 53) as
cos ¢ sin ¢do dz df.

Note that for arbitrary (z.y) the point (0,0. ~z* — y*) € A and the point
(0,0, ' + y* + ¢) € B. Thus the z-coordinate of any plane which separates
A and B must be between 0 and c. Furthermore, because of symmetry. to
get the measure of planes separating A and B the z-variable only needs to be
integrated from 0 to c¢/2 and the result multiplied by two.

The set of planes separating A and B are bounded by the set of planes
tangent to either A or B. By a straightforward computation, the upward

normal vector to s4 is

4x3 43 1

V1 + 1628 +16y% \/1+ 1628 + 1648 /1 + 162° + 168

Then solving n4 - s4 = ny4 - (0,0, z) for y implies that y = (z/3 — z%)/4 at a

point(z, y) of tangency to A.
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Furthermore at such a point of tangency

coso—( - v 0)(100)— A -
VB +E 8+ )T S S+ (23 P
which implies that © = 3,,,(;:/,:‘;"5;:,9,30)”4. Furthermore y = (2/3 — z*)!/4

3 21/4 0osl/3 6 s 1/4 =/44int/3 g
B (‘/ - (31/4(cos-*/ao+sm4/3 9)1/4) ) " 31/4(cos*/3 0 + sin*/3 9) 14"

Also at such a point of tangency cos¢ =n4-(0.0,1) = m. Thus

2 1 l
cosO=1 +162° + 1645 162377 con? 8 1632507 ¢
p = 2/ = ¥in
1+ 3V/3(sin"/3 0 +cos?/30)3/2 + 33(sin /3 0 p cos/36)372

_ 3v/3(sin'/3 § + cosi/? §)3/2
= 1623/2 + 3\/§(sin4/39 + cos?/3 9)3/2.

Thus the measure of planes separating the two surfaces is

3V3mnt/3 9 econt/35,3/3

2r pi peos—lyy -
2 V 16:3773/F0int 73 5-coed?3 5)372 . _
2 / / / cos osin ¢do dz df
0 0 0

= r3
=/ / - cosv
o Jo

2r  pe/2 1623/2
= / / dz df.
o Jo 162372 + 3v/3(sin*/> 0 + cos/3 §)3/2

cos=! / Jﬁ[:in‘/"’ 5 +cond?3d 9)3/2
\/ 163372 = 3/F(nin/3 §.-cond/3 9372
0

dz df

10.4 Main Theorem

Theorem 10.4.1 Let c > 0. Let A be a body whose boundary is parametrized

by sa(z,y) = (z,y, —z* —y*). Let B be a body whose boundary is parametrized
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by sp(x,y) = (=, —y, r* +y* + ¢). Then the measure of planes separating A

and B is equal to the total absolute mean curvature over the envelope minus

the total absolute mean curvature over the caps.

Proof. Because A and B are symmetric relative to the point 0.0.c/2) this

theorem is actually a corollary of Theorem 7.4.3.

Numerical Evidence. To provide nuruerical evidence for the theorem. the di-
rect integrals and mean curvature integrals were computed numerically with
a Fortran computer program using Simpson's Rule. Temple graduate student
Jian Jun Xu assisted this author by writing a Fortran program that applied
Simpson’s Rule to the integral of mean curvature over the caps and which
could be easily adapted to the other two integrals. For each integral we exper-
imented with different numbers of nodes and tried to strike a balance between
speed and precision. Table 10.5 gives the results for various values of c. the

distance between the surfaces. More details are given in Appendix A.

10.5 Figures and Tables

Figure 10.1 below shows the envelope of separating double tangent planes

along with the caps. Note that this is an example of a pair of smooth surfaces
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which are not surfaces of revolution but nevertheless has a conical envelope.
The envelope shares the four-fold rotational symmetry of the original pair.

Figure 10.2 is a graph of the integrand of the direct integral in terms of
its coordinates. The figure clearly has four-fold translational symmetry and
also reflective symmetry in the 4 variable. This symmetry comes from the
sum of even powers of functions of sin# and cos# in the denominator of the
integrand. Therefore when we numerically integrated we saved considerable
time by integrating the 6 variable only from 0 to 7 /4 and also multiplying the
integrand by 8. See Appendix A.

Figure 10.3 is a graph of the integrand of the mean curvature over the caps.
Notice the four-fold rotational symmetry and also the reflective symmetry. We
already took advantage of the rotational symmetry in deriving the formula in
Theorem 10.2.2. Further time was saved in numerically integrating by also
taking advantage of the reflective symmetry and multiplving the integrand by
two.

A problem sometimes arose in numerically integrating the mean curvature
over the caps because one of the limits of integration was a fourth root of a
positive number close to zero but because of rounding it sometimes came out
to be the fourth root of a negative number. This problem was avoided by

dividing and reducing the integration region as is shown in the shaded areas
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of Figures 10.4 and 10.5. See Appendix A for the actual Fortran computer

program.

Table 10.1: Fourth Order Surfaces Compared Numerically

Distance Separating Measure =~ Mean Curvature Integral

1 0.728378874232 874  0.728378874232 79
2 2.63631526835390 2.63631526835390
3 5.061597926815 48 5.061597926815 77
4 7.730606887289 56 7.730606887289 43
5 10.53295843036 70 10.53295843036 681
6 13.41665770598 72 13.41665770598 673
T 16.354001011650 8 16.354001011650 34
8 19.32881108893 77 19.32881108893 651
17 46.8261435485 230 46.8261435485 1628
27 77.8847299848 921 77.8847299848 7195
T 109.099436078 202 109.099436078 1591
47 140.3821089281 90 140.3821089281 14
T 171.701492283 835 171.701492283 714
67 203.043337536 226 203.043337536 0398
s 234.400101149 388 234.400101149 1305
87 265.767367386 731 265.767367386 3842
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Figure 10.1: Fourth Order Caps With Envelope
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Figure 10.2: Fourth Order Direct Integrand

Figure 10.3: Fourth Order Caps Integrand
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Figure 10.5: Fourth Order Cap Reduced Integration Region
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CHAPTER 11

MEASURE OF PLANES
SEPARATING A
TWO-PARAMETER CLASS

OF COAXIAL PARABOLOIDS

11.1 Introduction

In this chapter we compute the measure of planes separating two paraboloids

with graph of function parametrizations of the form

sa(r.y) = (r.y. —ar’ — y*) and
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sa(z,y) = (-z, -y, * + ay® +¢)
where (z,y4.z) € R%. a > 1, and ¢ > 0. Thus this class of paraboloid pairs is
parametrized by a shape parameter a and a separation parameter c.

Note that this example has discrete symmetry but not the continuous sym-
metry evident in the example of coaxial surfaces of revolution. It is an inter-
esting example to study because it is a relatively simple example in which the
set of separating double tangent planes have an empty intersection and hence

the envelope of separating double tangent planes is not a cone.

11.2 Parametrization by Tangent Planes

Definition 11.2.1 Let(z.y,z) € R3. Let S be a surface in R®. A parametriza-
tion by tangent planes of S is a parametrization of the form

s(f. w) = (z(d. w). y(8, w), z(4, w))

where at a point (6.w), @ is the angle with the r-azis of the projection onto
the ry-plane of the upward normal vector and w is the z-coordinate of the

intersection of the tangent plane uith the z-azis.

Theorem 11.2.2 Leta > 1. Let ¢ > 0. Let (z,y.z) € R®. Parametrize two

paraboloids as

(11.2.3) sa(z.y) = (¢, y. —az® — )
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(11.2.4) sa(z,y) = (-, -y, 22 + ay® + ¢).

Then the paraboloids may be re-parametrized by tangent planes as

Vwecesd  awsing —'w)
Ve + (a - 1)sin?8)’ /1+ (a - 1)sin?f’

(11.2.5)  sa(8,w) = (

(11.2.6)
sa (8, ) = (_ \/a(c—w)cgso __ Vec-wsinf 9% )
T V1+(a—-1)cos?0 /a(l+(a—1)cos?8) N

where at a point (8.w), 8 is the angle with the r-acis of the projection onto
the ry-plane of the upward normal vector and w is the z-coordinate of the

intersection of the tangent plane with the z-aris.

Proof. We differentiate Equation 11.2.5 to compute the tangent vectors to the

coordinate curves of sp at a point (r4.y4)
(1.0. —2ar4) and (0.1.-2y,).

Likewise the tangent vectors to the coordinate curves of sg at a point (zg. yg)
are

(-1.0.2rg) and (0.-1.2ayg).

We then compute the crossproducts of the tangent vectors and normalize to

get the corresponding upward unit normal vectors

(2ax4,2y4,1)

Np = —/—m—m———m—
A “/ 402;:‘1 + 4yi + 1

and
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(21:31 2ayBs 1)

g = —F/—————.

Let 04 and og be the angles of the upward unit normal vectors to the respective
surfaces with the positive z-axis for 0 < ¢4 < 7/2 and 0 < ¢ < 7/2. Let
6.4 and 8g be the angles of the projections to the .ry-plane of the respective

normal vectors with the r-axis for 0 < 84 < 27 and 0 < g < 27. Then

1
cosoy=n,-(0.0.1) = — - and
' Vidairt + 43 + 1

(ar4,y4.0)

7 -
Va 3-.4 + 4

Solving these two equations for r 4 and y4 gives

ary

NCEET A

cosfy =

-(1.0.0) =

__cosf4tangy

(11.2.7) Iy and
2u
r) _ sin 0.4 tan @4
(11.-.8) Ya = ——-—-'—2 .
Likewise
1
cosog =n (001)=-—-——————-—__——— and
5o T VAD F iy + 1
COSOB _ (J—‘B,a‘ys, 0) . (1'0‘ 0) - ILg

- VIh+ a2y}

Solving these two equations for rg and yg gives

_ cosfgtanog
= -——‘)_

(11.2.9) g and
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__sinfptangg

(11.2.10) o

Let w4 and wp represent the intersections of the tangent planes to the respec-
tive surfaces at the respective points (x4, y4) and (zg, yg) with the z-axis. For
fixed 64 and w4 find the value of ¢4 for tangent planes to the first surface as

follows. We first compute

Np 'Sy = ————-——a‘tz“ + !/?1
Vaa?r: + a4 + 1

Wy
\/4021?-4- 443/'i-(+ 1

and

nA M (0v07 wA) =

Then solving ny - sq = np - (0,0, w,) for ¢4 gives

2 aw 4

V1+(a-1)sin?8,

Similarly for fixed 85 and wg we find the value of ¢5 for tangent planes to the

(11.2.11) tan g, =

second surface as follows. We first compute

Then solving ng - sg = ng - (0.0, wg) for ¢5 gives

2 /ale - w
(11.2.12) tan g = __:._ﬂ__’_"L,
v1+(a—1)cos? g
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Then substituting equation 11.2.11 into equation 11.2.7 and equation 11.2.12

into equation 11.2.9 yields

Jwacosfy y Vaw,sin 84 d
I4= — 4= an
1T Va(l+ (a— 1)sin?6,) YT /14 (@-1)sin’0,

va(c— wg)cosfpg _ V¢ — wgsin fg

B fita-Deots 7 Jalt(a-Dsmitp)

Then substituting these into the equations 11.2.3 and 11.2.4 of the original

parametrization yields the desired equations 11.2.5 and 11.2.6. a

11.3 The Envelope of Separating Double Tan-

gent Planes

Lemma 11.3.1 Leta > 1. Let ¢ > 0. Let (r.y.2) € R®. Parametrize two
paraboloids as
sa(r.y) = (r.y. —ax? — y?)
sa(z,y) = (—z, -y, 2 + ay® +¢).

Then the locus of separating double tangent points on surface sp is given by

9_.< Vvcecos8  Jacsinf _c(1+(a—1)sin20)>
Vala+1) Va+1' a+1

and the locus of corresponding separating double tangent points on surface sg

ts given by
0 — (___\/“_""059 __Vesinb C(a+2+(a—1)c0520))
va+1 ) ‘/a(a_*_l). a+1 .
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Proof. By Theorem 11.2.2 the surfaces may be reparametrized by an angle p

and intersection with the z-axis w of the tangent planes as

Vu cos 8 Vawsin 8

b.uw)= . L-w
sa(6.) (\/:1(1+(a—1)sin29) V 1+ (a—1)sin*8 )
sp(0.u) = (— va(c —w)cosf Ve — wsinf 2 — ).

V1+(a-1)cos?8 - va(l + (a — 1)sin®§)
Recall equations 11.2.11 and 11.2.12

tan ¢ 2 /auy
04 = ;
\/1 + (a — 1)sin® 6,4
2/ alc — w
tan og = v a( B)

v 1+ (a—-1)cos?lg

giving the angles of the normal vectors with the z-axis at the points sz (64. w4)
and sg(fp. wg). Because the reparametrization of the surface was by tangent
planes. in order for corresponding points on the two surfaces to be points of
double tangency. the corresponding coordinates must be the same. Thus we

can drop the subscripts to get

tan o = 2vau
V14 (a—1)sin’8

2 Jalec =«

tano = —— ale— v)

v1+(a—1)cos?8
Solving the system for w then gives

c(1 + (a — 1)sin? )

11.3.2 = w(f) =
(11.3.2) w = w(f) PO
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Thus the locus of separating double tangent points on surface s, is given by

- : 20
9—+sA(9,w(0))=< \/5(“291 ijn9 c(1+(<;+11)sm ))

and the locus of corresponding separating double tangent points on surface sg

is given by

6 — sg(0.w(6)) = (—-———ﬁzm". __Vesing clat2+(a- l)cos29))

Jaarn e+l

which proves the lemma. a

Theorem 11.3.3 Leta> 1. Letc>0. Let0< 9 < 2r. Let 0<t < 1. Let

(z,y, 2) € R®. Parametrize two paraboloids as
sa(z.y) = (£.y. —az® — y*)

sa(z.y) = (-, -y, ¥ + ay® + ¢).

Then the envelope of separating double tangent planes may be parametrized as

s(8.t) =

((1 —(a+1)t)yccosf (a—(a+1)t)yesing o(2a+ 1)t -1+ (1 - a)sm2o))

Va(a+1) ' Vvala+1) ’ a+1

Proof. According to Lemma 11.3.1 the corresponding points of separating

double tangency on the two surfaces are given by

vccos  acsind  c(1+ (a—1)sin®6)
sa(f,w(8)) = (\/a(—a-{-_l \/E-f-_ 11 ) and
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_( +accosd  fesinh  c(a+2+(a—1)cos®d)
s8(6, w(9)) = (__\/—?Iﬂ e 2t 1 )

Let

s(0.t) = (1 = t)sa(8. w(8)) + tsp (8, w(8)) =

((1 ~(a+ 1)t)y/ccos (a—(a+1)t)yesinb c(2a+ 1)t —1+(1 - a)sng)>
va(a+1) . vala+1) ) a+1 .

This is our candidate for the envelope. Recall that an envelope of separating
double tangent planes is defined as a surface whose tangent planes are exactly
the set of separating double tangent planes. We check that our candidate is

an envelope as follows. First recall Equation 11.2.5

Vu cosé Vawsin
Va(l +(a-1)sin?8) 1+ (a—1)sin?8

sa(f.w) = (

giving the equation of the lower surface parametrized by tangent planes. We

differentiate to get the equations

aw )
sas(f.w) = T (os Deit) " (-sinf.cosf.0) and
SA‘,(O. l.l.’) = ( COS0= . \/351110 =- -1)
' 2/ aw(l + (a — 1)sin?6) 2y/w(l + (a - l)sin2 6

of the tangent vectors parallel to the coordinate curves. Then taking the cross

product and normalizing gives the upward unit normal vector

(2/azcosb,2/azsinb. \/1 + (a — 1)sin” 6)
Vdaz +1+ (a —1)sin“4

llA(o. 'w) =

Then using Equation 11.3.2 to replace w by

=c(1+(a—1)sin20)

w(®) a+1
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we get

(2/ac cosb.2\/ac sinb, Va +1)
na(p. w(f)) = Vdac +a+1

at points of double tangency. Thus the distance of the separating double

tangent planes from the origin is given by

na(0. w(6)) - sa (6. w(h))

_ (2V/ac cos,2\/ac sinb. Va+1)
- VAac ta+1
veeosd  (Jacsin (1 + (a - I)Sin29)>
<\/’1(U_+l) \/h.- a+1
_e(l+(a—1)sin’h)
T Vet lWlactata

Similarly we differentiate to get the tangent vectors to the coordinate curves

of our candidate for the envelope to get

. _( (1 = (24 1)t)/csinf (a - (a+ 1)t)\/ccosh 2c(1—a)sin9cos€>
0 = | —

a(a + 1) ' Va(a + 1) ' a+1

and s, = (—\/a+ 1\/Ec050. -va+ ll/EsmB.Qc).

Ve Va

Then we take the cross product and normalize to get the normal vector

(2vac cosb.2/ac sind. vVa +1)
Vdac+a+1 )

n(f.t) =

Thus the distance of planes tangent to our envelope candidate from the origin
is

n(d.t) - s(6.t)
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_ (2V/ac cosb,2/ac sinf, va+1)
- Vdac+a+1
((1 —(a+1)t)/ccosb (a—(a+1)t)\/csin® c(2(a+1)t—1+(1- a)sin20))
JGiD JaarD ar 1
_ ¢(1+(a—1)sin?§)

- \/a+1\/4ac+a+a'

Thus for 0 < § < 27 the normal directions and distances to the origin of

the tangent planes to the envelope candidate agree with the normal directions
and distances to the origin of the separating double tangent planes. Thus our
candidate for the envelope is in fact an envelope of the set of separating double
tangent planes. a

See Section 11.6 for a graph of the envelope when a = 2 and ¢ = 6.

11.4 Direct Measure

Theorem 11.4.1 Leta > 1. Letc > 0. Let sa(z.y) = (r,y, —ax? — y?). Let
sg(z.y) = (—r, -y, 1% + ay® + c). Then the measure of planes separating the

two surfaces is

T a+1
I‘;[-lac+(a+1)ln(4ac+a+1)].

Proof. In fwg-coordinates the motion-invariant measure on the set of planes
in R® is given by Ambartzumian (1990, 53) as cos¢ sino do dw df. Recall
from equation 11.3.2 that at separating double tangent points

c(1 + (a — 1)sin®6)

w(6) = a+1l
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Recall also equations 11.2.11 and 11.2.12

2 /awy,

Y P 1)sin? 0,
2y/a(c —wp)

tan —
%6 = 1+ (a - 1)cos?0p

giving the angles of the normal vectors with the 2-axis at the points of tan-

gency. Thus the measure of planes separating the two surfaces is

- - @, D
2tl-1a l:nn tan—t 2/aw
/ / = / 1-(3—1)sind %

cos ¢sin odo dw df

Ay a(c-w)

/ _/:_._“’N-l!nnzq / e COS(DS]_n@dQ du.' d0
(l—(u-l!mn !
= / -t 2aw d o
- daw + 1+ (a-1)si’0

2a(c - w)
/ /(\o(;«-lhmz‘i\ 40(6 -— u.‘) + 1 + (a - 1)c0529du do

a+1
= Z(-1-[4ac+ (a'*'l)m(M)]

which is what we were trying to prove. ad

11.5 Mean Curvature Integral

Lemma 11.5.1 The total absolute mean curvature over the envelope is 2mc.

Proof. As above the envelope of separating double tangent planes may be
parametrized as

s(8.t) =
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((1—(a+1)t)\/5cosﬂ (e — (a+1)t)\/csinb c(2(a+1)t—1+(1—a)sin20))

Va(a+1) ' Va(@a+1) ’ a+1

We differentiate to compute the tangent vectors of the coordinate curves

—(1 = (a+ D)t)ycsind (a— (a+ 1)t)y/ccosf 2c(1 — u)sinGcosB)

Solf.1) = ( va(a+1) ' va(a+1) . atl

and sy(6.1) = <—\/c(a + 1)c050. —el(a + l)sinﬁ._zc)‘
7 7

Then we take the cross product of the tangent vectors to find the normal

direction

(2(. 2cosf(a — (a+ 1)t + (1 —a)sin? 8 2c¢%2sinf(1 — (¢ + 1)t + (a — 1) cos* 8§

va(a +1) va(a + 1)

2(1 +(a - 1)cos?d — (a + l)t)).
We then compute the norm of the normal direction

c(l1-(a+1)t+(a—1)cos’f)vVdac+a+1
ava+1

and then divide the normal direction bv its norm to get the unit normal vector

n(d.t) = (2y/ac cosb.2\/ac sinb. /u + 1)
T Vdac+a+1 ’

We next compute the coeflicients E. F. and G of the first fundamental form
E=s9-5¢

- a(a j- 1)2 [(“'*' 1)((‘1'*' 1)t? +sin® 8 + a® cos® 6 — 2(a + 1)t(sin’ @ + a cos? 9))

+4ac(a — 1)%(cos? § — cos® §) |,
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dac+a+1

F=89-s.=c(1—a)( a(a+1)

)sinBcoso,
and G=s,-s,=§(4ac+a+1).

We next compute the derivatives of the tangent vectors

S (—(1 ~ (a+ 1)t)\/ccosf —(a@a+ 1)t)\/esinb 2c(1 - a)(cos? @ — sin? §)
T =

Vva(a+1) ' va(a+1) ' a+1

St = ————'c(\a/_:l)(sin& —cos4.0),

and sy = (0,0.0).

Thus the coefficients e. f, and g of the second fundamental form are

€E=N- -8y =

-2 .
—_—| ] —1)cos®f - 1t ].
\/a+1\/4ac+a+1( * ) cos (a+ )>

f =n- s“ = 0,
and g=mn-8, =0.
Thus the integrand of the absolute mean curvature over the envelope is

leG — 2fF + gE|

|H|dS = |H||n|dt d§ = S

dt db = c dt db.

Thus the total absolute mean curvature over the envelope is

o pl
] / c dt df = 2rc.
o Jo
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Lemma 11.5.2 The total absolute mean curvature over the lower cap is

T

[4ac+(a+ 1)1n(i“ﬂ-+—1>].
8a

a+1

Proof of lemma. We parametrize the lower cap by tangent planes

Vwcosé Vawsiné
SA(G. U.") = = — . — —=. —uwil}.
Va(l +(a —1)sin?8) \/T+ (a - 1)sin? 8
We then differentiate to find the tangent vectors to the coordinate curves
Vaw X
b.w) = —siné. . :
sas(0. w) (e 1)sz())m( sinf. cos§.0) and
cos Vasinf )
saw(f, @) = — = .—1].
Aw(f,) (2\/aw(1 T (a-1)sin?8) 2\/w(l+ (a— 1)sm?6)

Next we compute the normal direction by taking the cross product

( —vawcosf —yawsin 6 -1
(14 (a - 1)sin?6)(3/2)" (1 + (a - 1)sin®0)(3/2)" 2(1 + (a — 1) sin? 0)(3/2))'

We then compute the norm

Vdaw + 1 + (a — 1)sin® @
2(1 + (a — 1)sin? §)3/2

We then compute the unit upward normal vector by dividing by the negative

of the norm to get

(2y/aw cos8.2\/awsinb. \/1 + (a — 1) sin* §)
Vdaw +1+ (a— 1)sin’ 0 .

Nag =

Next we compute the coefficients E. F, and G of the first fundamental form

aw

(14 (a—1)sin8)3’

E=sp9-sa0=
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(¢ —1)sinfcosb
2(1 + (a — 1)sin? 9)?’
1+ (a® — 1)sin? 0 + 4aw(l + (a — 1)sin®6)
taw(l + (a — 1)sin® §)

and

F=SA9-8A‘,=

G =sAw " Saw =

Next we differentiate the tangent vectors to get

_ Vaw
T (14 (a - 1)sin® 8)52

SAe (cos B(—1+2(a—1) sin? 8). sin B(a+2(a~1) cos'lo).o).

& (
3L+ (a - 1)sinl0)2
_ -1
B 1/awd2\/1 + (a - 1)sin* 8

Sadw =

—sinf.cos6,0), and

(cos 8. asiné. O).

SAww

We then compute the coefficients e. f. and g of the second fundamental form

2uw
(1+(a—-1)sin?0)32/4auw + 1 + (a - 1)sin?f

€ =IA - SAg9 =

f=nA-sA9w=0. and

V1+(a-1)sin®4
2w/ 4aw +a + (a - 1)sin2 8

g =NA Spaww =

Thus the integrand of the absolute mean curvature over the lower cap is

leG — 2fF + gE|

duw df
2na, |

|H|dS = |H||na|dw df =

faw+a+1

= — dw df.
Ydaw + 1+ (2 - 1)sn?f) 2 ¢

Thus the total absolute mean curvature over the lower cap is

2 S (1+{a—1)sin? 6) daw + 1
/ [ aw +a + — duw df
o Jo (d4aw + 1+ (a — 1)sin“8)

1 [F [sE(lHa—1)sin?0) a+(1-a)sin@
= - 1 :
2./(; /o dow +1+ (a —1)sin’f

duw df
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[4ac+ (e + l)m(wM.

a+1

S°|’*

Lemma 11.5.3 The total absolute mean curvature over the upper cap is

L[ﬁlac-&- (a + l)ln(

dac+a+1
8a )

a+1

Proof of lemma. We parametrize the upper cap by tangent planes

sa(ﬂ,w)=( —\/a(c—w)cos‘0 ' __Ve—wsing 9% —u)
V1+(a—1)sin’f \/a(1+(a—1)sm29
We then differentiate to find the tangent vectors to the coordinate curves

Vale - w) (sin 6. — cos 4.0)

(14 (a - 1)cos26)3/2

SB@(O, w) =

and Spw(p, w)
< Vacosd sin )
2y/(c—w)(1 + (a— 1) cos?8)’ \/a(c -w)(1+ (a —1)cos?8)
Next we compute the normal direction by taking the cross product

(2v/a(c — w)cos 8,2 \/a(c — w)sin¥, \/1+(a—1)coszj

2(1 + (2 — 1) cos? §)3/2

We then compute the norm

Via(c - w)+1+4(a—1)cos?d
2(1 + (a — 1) cos? §)3/2

We then compute the unit upward normal vector by dividing by the norm to

get

_ (2ale- wicosd, 2/ale — wsing. y1+ (a ~ Deos”h)

4a(c —w)+ 1+ (a—1)cos?f
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Next we compute the coefficients E, F, and G of the first fundamental form

a(c — w)
(1+(a—1)cos?28)?’

E =3spg-spy =

(a — 1)sinfcosf
2(1 + (a — 1)cos? )2’
1+ (a® - 1)cos®d + da(c — w)(1 + (a — 1) cos®§)
4a(c — w)(1 + (a — 1) cos? §)

and

F=SBg-SBw=

G = spw ' Spw =

Next we differentiate the tangent vectors to get

SBes = 1+ (a i(cl)—coll;l 8)572 (COS 8(a+2(a—1)sin? @), sin H(1-2(a—1) cos? 9). O) .

va
2y/c—uw(l + (a — 1) cos? §)3/2
1

B = 4/a(c - w)¥?\/1 + (a - I)COS'-'-G(

We then compute the coefficients e. f. and g of the second fundamental form

SBow = (—sinf.cosf.0). and

acosf.sinf.0).

2a(c - w) _ .
(14 (a—1)cos?6)32,/4a(c — w) + 1 + (a — 1)cos?§

€ =1np - SBe =

f=np-spew =0. and

\/1_+ (a = 1) cos?6
2c—-w)y/Aalc—w)+a+ (z—1)cos?

9 =B ‘- SBww =
Thus the integrand of the absolute mean curvature over the upper cap is

leG — 2fF + gE|

g duw df

|H|dS = |H||ng|dw df =

dalc-w)+a+1

- 2(4a(c —w)+ 1+ (a — 1) cos?8) e db.
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Thus the total absolute mean curvature over the upper cap is

2% c -
/ / 5 da(c —w)+a+1 — du df
0 Jr(ire-nsinte) 2(da(c — w) + 1+ (¢ — 1) cos? 6)

1/2”/‘ L+ a+ (1l - a)cos*d e 4B
2 0 ﬁ(l{'(u—l)sinzﬂ) 4(1(0 - U.’) +1+ ((J. - 1) cos? g

dac+a+1
a+1 ’

= 1[4uc+ (a + l)ln(
8u

(]

Theorem 11.5.4 The measure of planes separating the two paraboloids is
equal to the total absolute mean curvature over the envelope minus the total

mean curvature over the caps.

Proof. Applying the lemmas above

/ |H|dS - / |H|dS — |H|dS

Se

— Yre— | tact+a+1\| 7| dac+a+1
=T 8(1[4fw+(a+1)ln(———u+1 » dac+(a+1)In —

T a+1
= —14 =
4a[ ac+(a+1)1n(4ac+a+1)]

which agrees with the measure of planes separating the two surfaces given in
Theorem 11.4.1 above. Thus the measure of planes separating the two surfaces
is equal to the total absolute mean curvature over the envelope minus the total

mean curvature over the caps. a
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11.6 Figures

The Maple V Release 6 computer program was used to sketch the graph of
the envelope when a = 2 and ¢ = 6. In this case according to Theorem 11.3.3

the envelope may be parametrized as
(11.6.1) s(6,t) = ((1 — 3t) cosd, (2 — 3t)sin 4. 2(6t — 1 — sin* §))

where 0 < 8 < 2, 0 < ¢t < 1, and at a point (4.t), 8 is the angle of the
projection onto the ry-plane of the upward normal vector with the z-axis for
(r.y.z) € R® and t represents a relative distance from the lower point of
double tangency along the line segment connecting two corresponding points
of double tangency. Note that this equation is linear in ¢ and thus the envelope
is a ruled surface. See Figure 11.1 for a graph of the envelope.

Figure 11.2 shows some important features of the envelope, namely the two

separating double tangent curves
8(0.0) = (cosf.2sinf. ~2(1 +sin?6) and

s(6,1) = (—2cos 6§, —sinh,2(4 + cos? §))

and also the line of striction. According to Do Carmo (1976, 188-197) the line
of striction is the unique directrix or generating curve of a non-cylindrical ruled
surface that is perpendicular to the rulings of the surface. It is a property of

the line of striction that any singularities of the surface are located on the line
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of striction. Following the procedure in Do Carmo the line of striction v(6) is

computed as follows.

§'(6.0) - (s'(8,1) — §'(4.0))
(s(6.1) — 8'(6.0)) - (s(6.1) — 8/(6.0))

v(p) = s(6.0) — (s(6.1) — s(6.0))

= (—cos®6,sin’ 4,6 cos’ 6).

As a start in understanding the singularities of the envelope we differentiate

to find the tangent vector
3sinf cosf(cosf.sin . —4)

of the line of striction. From this we see that the tangent vector is zero when

3r

;l———O. 1“?

(VIR

Furthermore, ignoring the common factor. we see that the tangent direction
(cos@.sinf. —4)

changes at these four points. Thus the line of striction has cusps at these four
points.

In order to further understand the singularities and self-intersections of the
envelope, the intersection of the envelope with the line of striction in the above

parametrizations was computed as follows.

S(8.t) = v(f) implies
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(1-3t)cosf = —cos®h

\ (2-3t)sinf = sin®f

L 2(6t — 1 —sin’8) = 6cos?d

which implies t = %(1 + cos® 6).
The Maple computer program was then used the to make separate graphs of
the lower part of the envelope (for ¢ between 0 and (1 + cos?4)/3) and the

upper part of the envelope (for t between (1+cos®#6)/3 and 1) shown in Figures
11.3 and 11.4.

In order to determine which points on the line of striction are singulari-
ties. the normal vector near the line of striction is analyzed in greater detail.

Equation 11.6.1 is differentiated to find the tangent vectors
se(.t) = ((3t — 1) cosf.(2 — 3t)sinf. —4sinfcosf) and

se(f.t) = (—3cosf. —3sinb. 12)
to the coordinate curves. The cross product is then taken to find the normal
direction
(8.t) — 3(1 + cos®8 — 3t)(4cosf. 4sinb.1).
Thus on the upper envelope (¢t > (1+cos?8)/3) this normal direction is upward.

on the lower envelope (t < (1 + cos?#)/3) this normal direction is parallel but

downward, and on the line of striction (¢t = (1+cos? 1) /3) this normal direction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



199

is zero. Thus every point on the line of striction is a singularity and the points
that are not cusps of the line of striction are folds of the envelope.

From these graphs it appears that the lower envelope has a self-intersection
for arbitrary @ when the z-coordinate is zero. We then set the x-coordinate

equal to zero and solve for ¢ to get
Ca 1
(1 -3t)cosf =0 which implies ¢ = 3

Then replacing ¢ with 1/3 in the equation for the envelope produces the equa-

tion of the lower curve of self-intersection
u — (0,sin 6.2 cos? §).

We note that § and 7 — § mod 27 have the same image on the lower curve of
self-intersection and that § and 7 — § mod 2r are distinct for 8 # =/2.37/2.
Note also that for § = 7/2, 37 /2 the above equation produces a cusp of the line
of striction. Thus the lower envelope self-intersects in an open curve whose
endpoints are cusps of the line of striction.

It may seem odd not to classify these curves of self-intersection as singu-
larities of the envelope but for § # /2. 37/2 the pairs (6.t) and (7 — 8.t) of
points whose images are the same have non-overlapping neighborhoods in the
domain of s. Thus locally the function s is not singular at these points.

Likewise it appears that the upper envelope has a self-intersection for ar-

bitrary u when the y-coordinate is zero. We then set the y-coordinate equal
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to zero and solve for ¢ to get

(2-3t)sinf =0 which implies ¢ =

Wil

Then replacing ¢ with 2/3 in the equation for the envelope produces the equa-

tion of the upper curve of self-intersection
8 — (—cosf.0,2(2 + cos’§)).

We note that 6 and —6 mod 27 have the same image on the upper curve of
self-intersection and that § and —6 mod 27 are distinct for p # 0,7. We
also note that for § = 0.7 the above equation produces a cusp on the line
of striction. Thus the upper envelope self-intersects in an open curve whose
endpoints are cusps on the line of striction.

[n summary the line of striction of the envelope is a closed piecewise smooth
curve with four cusps. Each of the four smooth pieces of the line of striction is a
fold of the envelope. Thus every point of the line of striction is a singularity of
the envelope. Additionally the envelope has two open curves of self-intersection
which are not points of singularity and whose endpoints are at the cusps of

the line of striction.
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Figure 11.1: The Envelope for Paraboloids
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Figure 11.2: Envelope Boundaries for Paraboloids
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Figure 11.3: Lower Envelope for Paraboloids
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Figure 11.4: Upper Envelope for Paraboloids
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CHAPTER 12

MEASURE OF PLANES

SEPARATING A SPHERE

AND A CUBE

12.1 Introduction

In this chapter we compute the measure of the set of planes separating a
sphere of radius r and a cube with side s distance ¢ apart and sharing an axis

of symmetry orthogonal to two opposite faces of the cube.
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12.2 A Convenient Parametrization

Let (z.y.z) € R®. Without loss of generality assume that the z-axis is the

shared axis of symmetry. We parametrize the sphere as
Sa(6.9) = (rcosfsino. rsinfsin@.rcos ).

Also without loss of generality we can position the cube so that each vertex
has either an r-coordinate or a y-coordinate that is zero. Thus we take the

vertices on the face of the cube closest to the sphere as

(%.O.C-{"I‘). (0. %.c-i—r). (—%.O.c+r). and(().——\;—i.c+r).

12.3 Envelope

Lemma 12.3.1 Let S, denote the sphere
Sa(0,¢) = (rcos@sin ¢. rsin @sin ¢, r cos 0).
Let Sg denote the cube urth lower vertices

(%,Om-i-r), (0,\%,c+r). (-—%,0.6-{-"). and(O.——\—/%.c+r).

Then for

T T
-——- < 8 < -
4 4
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(i) the value of ¢ at separating double support points is

2 /s2cos2 8 + 2(c2 + 2
19(0)=cos'l( r(c+r)+scosf/s2cos2d + 2(c2 + cr)) and

2c+r)? + s?cos? B

(ii) the locus of separating double support on the sphere is

.

—V2rscos® + (c+ r)yv/2s?cos?§ + 4(c2 + 2er)
8 — | rcosé ; PN
Ac+r)? + s2cos? b

~V2rscosf + (c+r)\/2s%cos?0 + 4(c? + 2cr)
2(c+r)? + s%cos? 8

rsinf

2r¥(c+r) + rscosfy/s?cos? § + 2(c? + 2er)
2(c + r)? + s2cos? 6 '

Proof. We first compute the normal vector to the sphere
NVa(6.0) = (cosfsin o.sinfsin 0. cos ).

Next we note that the normal vector of any separating double support plane
will be the .V4. the normal vector to the sphere. Thus we take the dot products

of V4 with a point on the sphere and with a vertex of the cube to get
.\'_.g . S..\ =r

Ny- (—735—.0.c+ r) = —-%cosOs’mtD-l- (c+r)coso.

Then solving

Ni-Sy=Ny- (*—i- O.c+ r)

7
vields

~V2rscosf + (c + r)/2s% cos? 8 + 4( + 2cr)
2(c+ r)2 + s2cos?

sing =
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6= 2r(c + ) + scos 8y/s? cos? 8 + 2(c? + 2cr)
o= 2(c+7r)? + s2cos?6 ’

This proves (i) and in the equation for S4 replacing sin ¢ and cos ¢ with the

above expressions gives the desired result in (ii). a
Theorem 12.3.2 Let S, denote the sphere

Sa(6,8) = (rcos@sin ¢, rsinfsin ¢, r cos 9).
Let Sg denote the cube uith lower vertices

(\/ié,o,cw), (0, %.c+ r), (——5—5.0,c+ r). and(O.—\%,c%—r).

Then
(i) the envelope of separating double support planes is symmetric with re-
spect to rotations of angle w/2 about the z-azis and contains a planar portion

and a non-planar portion.
(ii) For —% < f < Eand0<t<1

the nonplanar portion of the envelope may be parametrized by

(t—-1)s —V2rscos + (c+ r)v/2s2cos? 8 + 4(c? + 2cr)
6.t) = .
5@.t) ( V2 + rtcosf 2(c+ r)? + s?cos?8

vt sin = 2rscos 8 + (c + r)\/2s? cos? 6 + 4(c2 + 2cr)

2(c+r1)? + s2cos?d '

2r¥(c+ 1) + rscos6y/2(cZ + 2cr) + s2 cos? @
2(c+r)® + s2cos?f

(1-t)(c+r)+t
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(iii) and for 6 =7/4,0<p<1l,and0<g<1

the planar portion of the envelope may be parametrized by

(g - ~V2r%s + V2r(c+r) \/32+4(c2+’cr)
Sp.q) = ( \/5 + 2 +4(c+r)?
(1-q)p- -V2ris + ﬁr(c+r)\/532+4(c2+‘7cr)
V2 + 2 +4(c+r)?

2 2 2
(1_4)(c+r)+q4r (c+r)+rsy/s?+4( cz-i--cr)).

24+ 4(c+r)?
Proof of (i). The symmetry of the envelope follows from the /2 rotational
svmmetry of the original sphere cube pair. The type of curvature of the

envelope follows from the type of curvature of the original pair.

Proof of (ii). To get the formula for the nonplanar portion of the enve-
lope we connect the separating double support points of the sphere with the

appropriate vertex of the cube. Thus

S(6.t) = t5(8.4(8)) + (1 - t)(-%.oﬁ r)

where S(8. o(8)) is the locus of separating double support points on the sphere
given by Lemmma 12.3.1 above. Then replacing S(.o(6)) with the formula

given in the lemma yields the desired result.

Proof of (iii). The planar part of the envelope will be a triangle with two

vertices on the cube and one vertex at the point S4(7/4, ¢(7/4)) on the sphere.
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We first compute
Sa(m/4.0(m/4))
=(—\/§r23 + V2r(c+r) /52 + 4(2 + 2cr)

82 +4(c+r)?

—V2r2s + \Vr(c + 1) V's2 + 4(c2 + 2er)
2+ Hc+r)? '
4r¥(c+r) + rsy/s? + 4(c? + 2cr)
82+ 4(c+r)? '

We next parametrize the appropriate edge of the cube

S

(1 —p)(O.——;—.Q..c-k r) +p<— \/2-'0'6+ r)

= (- ek
= (-5

We then parametrize the triangle

.c+r).

-1
(1- q)(—%. p 7 )s. c+ r) +qSa(m/4.0(7/4))

to get the desired result. a

12.4 Direct Computation of Separating Mea-

sure
Theorem 12.4.1 Let S, denote the sphere

S4(8.9) = (rcos@sin ¢, rsin fsin ¢, rcosq')).
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Let Sg denote the cube with lower vertices

(-}5,0.c+r). (0, -j—:—rj,c-i- r), (——\‘/9_-2-,0,c+ r), a.nd(O.-%.c-{- r).

The measure of planes separating the two bodies is

*/4 [2r3 , 3 T cos?
1r(c—r)+2/ 2r¥(c+r) +"rscos0\/2(cz+7.cr)+s cos? §
2(c+r)? + s2cos?d

-r/4
_grscosetm_l([g—rscosﬂ+(c+r)\/2(c‘2+2cr)+s'2cos'20)] i,
2 r 2r(c+r)+scos,/2(c + 2cr) + s2cos? §

Proof. First determine the z-intercept of the separating double support planes
by solving

Na(6.0(8)) - Sa(8.6(8)) = N4(6.9(8)) - (0.0. 2)

for z to get

. Z'2!‘2(c-+— r) + rscosfy/s?cos? 8 + 2(c? + 2cr)
- 2(c+r)? + s?cos? 6

which implies that

2r(c+r)? + rs®cos? ¢

)= 2r(c+r) + scos8,/2(c® + 2cr) + s2cos?§

For z < 2(f) separating planes will be bounded by tangent planes to the

2=z

sphere. Thus solving
Na(6.0)- S1(6.0) = N4(0,9) - (0.0. 2)

for ¢ gives

o=t ()
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at points of tangency on the sphere. For z > z(f) separating planes will be

bounded by support planes to the cube. Thus solving

N.(6.6)- (—%.O.c 1) = Na(6.6)-(0.0.2)

for ¢ implies

rs .
—Wsmocow-{- (c+r)coso = zcoso

which implies

o = o(8. 2) =cos"( rscosf >

V2c+r—2)2 +r2s2cos?f

Thus taking advantage of the 7/2 rotational symmetry the separating measure

w/4  pz(u) cos“(f)
4/ / / cososino do dz df
-x/4Jr 0

8 cos § )

w/4 c+r cm—‘( H:rr—2)dirdgdcond 9
+4/ / / : cos ¢sin ¢ d¢ dz df.
z(u) JO

~%/4

is

Then partially evaluating the integrals and simplifying gives the desired result.

a

12.5 Mean Curvature Integrals
Lemma 12.5.1 Let Sy denote the sphere

S4(6.0) = (rcosfsing, rsindsin . rcos o).
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Let Sg denote the cube with lower vertices

(%.O.C-i-r). (0.5‘—5.c+ r). (—78-5.0.&&- r). and((). —%.c-&—r).

Then the total absolute mean curvature over the spherical cap is

db.

r — 4 /”“ 2r(c + r) + s cosfy/2(Z + 2cr) + 5% cos?
2rr — dr
y 2(c+r)? + s2cos? 0

Proof. Because of the symmetry of the sphere/cube pair with respect to ro-
tations by angle /2 we need only consider one fourth of the spherical cap.
The cap will be bounded by points of separating double support. We first

determine the angle ¢ at points of separating double support by solving

Na-Sa= Ny (—%.0. c+ r)

to get

o(f) = cos™! lc+r)+ scosO\(’s'l 0?52 9‘+ 2(c2 + 2cr) '
2(c+r)? + s2cos?f
The absolute mean curvature on a sphere is well known to be 1/r and the area

element in these angular coordinates is sin® o do df. Thus. taking advantage

of the fourfold symmetry. the integral of mean curvature over the spherical

cap Is
/4 o(6)
4 / rsino do df
-7/4J0
Evaluating and simplifying this integral then gives the desired result. g
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Lemma 12.5.2 Let S, denote the sphere
S4(6.9) = (rcosfsin ¢, rsinfsin ¢, r cos ¢).

Let Sg denote the cube with lower vertices

8

(ﬁ.O.c-f-r).(O. —\;—‘z,c-i- r).(—-%,ﬂ.c-&-r). and(0.~%.c+ r).

Then the total absolute wedge function over the cubical cap is

95 cos-! dr(c +r) + s\/4(c? + 2cr) + s? .
4c+r)+s?

Proof. Since the cap in this example has only one face we only need to compute
the angle between that face and the envelope. The normal vector to this face

is (0.0,1). The normal vector to the envelope is
N4(6.¢) = (cosfsin g, sinfsin ¢, cos @).

Thus the normal vector for the separating double support plane of the flat face
of the envelope is N(7/4, ¢(7/4)) where ¢(8) is given in Lernma 12.3.1. Thus

the angle between the flat part of the envelope and the face of the cube is

cos™! (NA(n- /4.4(7/4)) - (0.0. 1))

[ 4r(c+ 1)+ 3 /4(cE + 2cr) + 52
= COSs l( 4(C+r)2+32 ).

The wedge function is half the length of the side times the angle. There are
four of them. Thus multiplying the result above by 2s gives the desired result.

a
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Conjecture 12.5.3 Let S4 denote the sphere
S4(8.0) = (rcos@sin @, rsinfsin @.rcos ¢).

Let Sg denote the cube with lower vertices

(%,O.C-{'T). (0. \/ié..c-i— r).(-:/s—ﬁ.ﬂ.c+ r). and(O.—%.c-i—r).

Then the measure of planes separating the cube and the sphere is equal to the
total absolute mean curvature/wedge function over the envelope minus the total

absolute mean curvature/wedge function over the caps.

Numerical Evidence. The mean curvature over the envelope was computed
for particular values of c. r. and s using the mathematics software package
called Mathematica 4 and a slightly updated version of a program written by
Alfred Gray for Mathematica 2. See Gray (1993, 302). The integrals were
then evaluated using Maple and Simpson’s Rule for particular values of the

parameters. See Table 12.5 below.

Table 12.1: Computations for a Sphere and a Cube

¢ r s Separating Measure Mean Curvature Integral

1 1 V2 054951627 28 0.5495167 4
3 1 V2 458428782 4 4.58428782 6
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12.6 Figures

The measure of planes separating a sphere and a cube is an interesting
example to study because it is the first example we have considered in which
one of the convex bodies was smooth and the other polvhedral. The other
pairs we have studied have been cither polyhedral or smooth but not mixed.
It is also interesting because the separating double support planes do not meet

in a point and thus the envelope is not conical as can be seen in Figure 12.1.
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Figure 12.1: Envelope for a Sphere and a Cube
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APPENDIX A

SAMPLE FORTRAN 90

PROGRAMS

A.1 Description of the Programs

The following Fortran 90 programs use Simpson’s Rule to approximate
integrals derived in Chapter 10 associated with a pair of convex bodies A4
and B in R3. Temple graduate student Jian Jun Xu assisted this author by
writing a Fortran program that applied Simpson’s Rule to the integral of mean
curvature over the caps and which could be easily adapted to the other two

integrals.
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The boundary of A is a fourth order surface parametrized by z,(z,y) =
(z,y,—z* — y*). The boundary of B is a fourth order surface whose boundary
is parametrized by ra(z,y) = (-r, -y, o + y* +¢).

In the sample programs below the constant ¢ in the parametrization of the
boundary of B is taken to be 7. To compute the integrals for other values of ¢
all occurences of 7 in the programs below were replaced by the desired value
of c. To change the number of nodes, the value of nl can be changed in the
programs below.

To run the programs, first each program was saved separately to a text
file. In that text file each Fortran command started in a new line in column
7 or higher rather than at the beginning of the line. The filename was of the
form "filename” .f where ”filename” was the same as the program name given
below. Next each program was compiled on a Unix system with Fortran 90
with a command of the form

f90 -r8 -fast -o "filename” "filename” .f
Finally each program was run from the Unix command line by typing

nice "filename” > "filename”.out &

The result after running these particular programs is given in Table A.1.
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Table A.1: Computations for a Fourth Order Surface

Absolute Mean Curvature over Caps Part [ 3.09462800370188
Absolute Mean Curvature over Caps Part II  9.97020711482128

Caps Total 13.06483511852316
Absolute Mean Curvature over Envelope 20.4188361301735
Difference (Mean Curvature Integral) 16.354001011650 34
Separating Measure 16.354001011650 8

A.2 Separating Measure

This first program directly computes the measure of planes separating the

convex bodies 4 and B. The name of the file is x4y4d7.f

program x4yd4d?

C modified July 5, 2001

C to compile f90 -r8 -fast -o filename filename.f
(o] to run nice filename > filename.out &

C

to change distance change lines program, d=
parameter n1=72000
parameter n=2#nl
implicit real(a-h,o0-z)
dimension x(0:n),y(0:n)
dimension v(0:n)
write(6,*)’n,n1:’,n,n1
a=0.

=AC0S(-1.)/4.

c=0.
=7.0/2.0
write(6,*)’a,b’,a,b
h=(b-a)/n1
do i=0,n

x(i)=a+i*h/2.

hi=(d-c)/n1

do j=0,n

y(j)=c+h1/2.#j
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enddo

v(i)=0.

do j=0,n1-1
v(i)=v(i)+h1/6*(£f(x(i),y(2*j))

/ +4 . *f(x(i),y(2%j+1) ) +£(x(1i),y(2%j+2)))

enddo

enddo

value=0.

do i=0,n1-1
value=value+h/6.*(v(2#%i)+4.*v(2*i+1)+v(2*i+2))

enddo

write(6,*)’direct=’,value

stop

end

function f(u,z)
implicit real(a-h,o-z)
£=128.*SQRT(z)*+3/(16.*SQRT(z) **3
+3.#SQRT(3.)*SQRT(SIN(u)*=*(4./3.)
/ +COS(u)**(4./3.))*%3)

return

end

~

A.3 Mean Curvature over the Envelope

This next program computes the total absolute mean curvature over the
envelope of separating double support planes of the convex bodies A and B.

The name of the file is x4ydceT7.f.

program x4yde7

C modified July 5, 2001
c to compile £90 -r8 -fast -o filename filename.f
c to run nice filename > filename.out
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[ %]
(=7

c to change distance change lines program, b=, f=
parameter n1=576000
parameter n=2#nil
implicit real(a-h,o-z)
dimension x(0:n)
write(6,*)’n,nl:’,n,nl
a=0.
b=(7./12.)#%0.25
write(6,*)’a,b’,a,b
h=(b-a)/nl
do i=0,n
x(i)=a+i*h/2.
enddo
value=0.
do i=0,nl1-1
value=value+h/6.*(£(x(2%i))+4.+f(x(2%i+1))+f(x(2%i+2)))
enddo
write(6,*) ’env=’,value
stop
end

function f(u)

implicit real(a-h,o-z)

£=32.%uss2+ (9. suss2+4 . +7 . +92+9 *SQRT((7./6.)~us*4))/
(3.#((7./6.)-us=4) =0 .25
*(16.%u**6+1.+16.*(SQRT((7./6.)-u**4)*=3)))

return

end

NN

A.4 Mean Curvature over the Caps

These last two programs compute the total absolute mean curvature over
two pieces of the caps of the convex bodies A and B. The names of the files

are x4y4c7a.f and x4y4c7b.f
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program x4y4c7a

C modified July 5, 2001

C compile with f90 -r8 -fast -o filename filename.f
c run with nice filename > filename.out &

C

distance is indicated in program, b=,c=,and d= lines
parameter n1=144000
parameter n=2+¢nl
implicit real(a-h,o-2z)
dimension x(0:n),y(0:n)
dimension v(0:n)
write(6,*)’n,n1:’,n,nl
a=0.
=SQRT (SQRT(7.0/12.0))
write(6,*)’a,b’,a,b
h=(b-a)/n1
do i=0,n
x(i)=a+i*h/2.
hi=(d(x(i))-c(x(i)))/n1
do j=0,n
y(j)=c(x(i))+h1/2.%j
enddo
v(i)=0.
do j=0,n1-1
v(i)=v(i)+h1/6*(£(x(i),y(2%j))
/ +4.#f(x(1),y(2%j+1))+£(x(i) ,y(2*j+2)))
enddo
enddo
value=0.
do i=0,n1-1
value=value+h/6.*(v(2%i)+4.*v(2%i+1)+v(2*i+2))
enddo
write(6,#*) 'capa=’,value
stop
end

function f(u,v)

implicit real(a-h,o0-2)

£=06. % (u**2+16. sus*25v*26+v*22+16 . xv22su**6)
/  /(1.+16.%u**6+16.%v**6)
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return
end

function c(x)

implicit real(a-h,o-2)
=SQRT(SQRT(7.0/12.0))
return

end

function d(x)

implicit real(a-h,o-z)
d=SQRT(SQRT(7.0/6.0-x**4))
return

end

program x4y4c7b

C modified July 5, 2001

C to compile £90 -r8 -fast -o filename filename.f
C to run nice filename > filename.out &

(o

to change distance change lines program, b=
parameter n1=576000
parameter n=2#nl
implicit real(a-h,o-z)
dimension x(0:n),y(0:n)
dimension v(0:n)
vrite(6,*)’n,n1:’,n,nl
a=0.
b=SQRT (SQRT(7.0/12.0))
write(6,*)’a,b’,a,b
h=(b-a)/n1
do i=0,n
x(i)=at+i*h/2.
h1=(d(x(i))-c(x(i)))/n1
do j=0,n
y(j)=c(x(i))+h1/2.%j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



229

enddo
v(i)=0.
do j=0,n1-1
v(i)=v(i)+h1/6=(£f(x(i),y(2*3))
/ +4.+f(x(i),y(2*j+1) ) +£(x(i),y(2%j+2)))
enddo
enddo
value=0.
do i=0,n1-1
value=value+h/6.#(v(2%i)+4.sv(2%i+1)+v(2*i+2))
enddo
write(6,*) ’capb=’,value
stop
end

function f(u,v)

implicit real(a-h,o0-2z)

£=96.% (us*2+16.2us*2sv26+vs#2+16. sva2+us*6)
/  /(1.+16.#usx6+16.%v*26)

return

end

function c(x)

implicit real(a-h,o-z)
c=0.

return

end

function d(x)

implicit real(a-h,o-z)
d=x

return

end
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APPENDIX B

Q-BASIC PROGRAM

The following QBasic program computes the measure of planes separating
two cubes empirically by randomly placing the cube pairs on a grid of parallel
planes and computing the proportion of such pairs which are separated by a
plane of the grid. The result is then compared to a numerical result obtained
from Ambartzumian’s formula (1990, 112).

This program is modeled after a similar QBasic program written by Temple
faculty member Eric Grinberg which randomly placed line segments on a grid
of parallel lines and used that to compute the probability that a randomly
placed line segment intersects a line of the grid.

The program contains some lines that were too long to fit on a printed

page. Therefore the long lines were printed here as two or more lines. Here

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



231

the continuation of such lines is indicated with an arrow in the margin. To
run the program one needs to delete the arrow and restore the long lines.
The printed program here differs slightly in some other nonessential re-
spects from the program that was actually run. Greek letters and symbols
used in the PRINT statements are spelled out here. Also some of the com-
ments were shortened in order to fit on the line. In Q-Basic comments follow
a single quote and are ignored by the compiler.
Here is the program.
"To run from DOS type gbasic /run croft605.bas
'and then press the Enter key.

DECLARE SUB RotationMatrix (sigma, theta, phi, rotate())
DECLARE SUB SeparationCheck

-> (theta, phi, cubes(), separation,
-> j1, ti, ul, vi, j2, t2, u2, v2, j3, t3, u3, v3)
DECLARE SUB ProgressReport (progress)
CLS
PRINT "This program computes the probability that a random
-> plane separates"
PRINT "two fixed disjoint cubes with equal sides s and
-> such that the second"
PRINT "cube has fixed orientation (sigma,theta,phi) and
-> fixed center (c1,c2,c3) relative"
PRINT "to the first cube given that the plane hits the
-> fixed sphere centered"
PRINT "at (c1/2,¢2/2,¢3/2) with radius c+SQR(3)#*s where ¢
-> is the distance"

PRINT "the centers of the two cubes."
GOTO GetInput
intersect:
CLS
PRINT
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PRINT "The two cubes must not intersect."”

PRINT
GetInput:
DO
PRINT
PRINT "Please type a number to represent the common
-> value s for the lengths”
PRINT "of the sides of the two cubes, for example 10,
=> and then press enter."
PRINT "(s must be greater than 0)"
INPUT s
LOOP UNTIL (s > 0)
DO
PRINT "Please type three numbers separated by commas
-> to represent the"
PRINT "orientation (sigma,theta,phi) of the second
-> cube in pi radians relative to the"
PRINT "first cube, for example .25,.25,.25, and then
=> press the enter key."
PRINT "((sigma,theta,phi) must satisfy O<=sigma<.5
-> and 0<=theta<i and 0<=phi<2)"

INPUT sigma, theta, phi
LOOP UNTIL (0 <= sigma AND sigma < .5 AND 0 <= theta

-> AND theta < 1 AND 0 <= phi AND phi < 2)
PRINT "Please type three numbers separated by commas to
-> represent the"
PRINT "center (cl1,c2,c3) of the second cube relative
-> relative to the"
PRINT "the first cube, for example 0,20,0, and then press
=> the enter key."

PRINT "The two cubes must not intersect."
INPUT c1, c2, ¢3

’Set up array giving the coordinates of the vertices of
-> the cube pair.

'The first component tells which cube.

’The next three components tell which vertex.

'The last component tells

-> vhich rectangular coordinate (x,y, or z).
DIM cubes(2, 2, 2, 2, 3) ’'set up array giving initial
FORt =1 T0 2 'coordinates of the first cube
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FORu =1T0 2
FOR v=1T02
cubes(1, t, u, v, 1)
cubes(1, t, u, v, 2)
cubes(1l, t, u, v, 3)

(-1) "t +ss8/ 2
(-1) “"u=*s/ 2
(-1) ~ves /2

NEXT v

NEXT u

NEXT t
pli = 3.14159265#

sigma = sigma * pi ‘rotate about the z-axis
theta = theta * pi ‘rotate about the y-axis
phi = phi * pi ‘rotate about the z-axis

DIM rotate(3, 3) ‘rotate then translate 1st cube

=> to get 2nd cube

CALL RotationMatrix(sigma, theta, phi, rotate())
FOR t =1 T0O 2
FORu =1 TO 2
FOR v =1 T0 2
FOR w=1T0 3
cubes(2, t, u, v, w) =0
FOR j =1 TO 3
cubes(2, t, u, v, w) = cubes(2, t, u, v, w)
-> + cubes(1, t, u, v, j) * rotate(w, j)
NEXT j
NEXT w
NEXT v
NEXT u
NEXT t
FOR t =1 TO 2 'translate the rotation of
FORu =1 TO 2 'cubel to get cube2
FOR v =1T0 2
cubes(2, t, u, v, 1) = c1 + cubes(2, t, u, v, 1)
cubes(2, t, u, v, 2) = ¢2 + cubes(2, t, u, v, 2)
cubes(2, t, u, v, 3) = ¢3 + cubes(2, t, u, v, 3)

NEXT v
NEXT u
NEXT ¢t
FOR t =1 T0 2 ‘check that the cubes don’t intersect
FORu=1T02
FORv =1T0O 2
count = 0
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FORw =1T0 3
IF ((-s / 2) <= cubes(2, t, u, v, w)

-> AND cubes(2, t, u,v, w) <= (s / 2))

-> THEN count = count + 1

IF count = 3 THEN GOTO intersect

NEXT w

NEXT v

NEXT u

NEXT t
DIM axisrotate(3, 3) ‘rotate cubes so their
squ = SQR(c1 =~ 2 +¢c2 - 2 +c3 ~ 2)

-> ‘centers are on z-axis

sq = SQR(c1 =~ 2 + ¢c2 ~ 2)

FOR i =1 TO 3

FOR j = 1 TO 3

axisrotate(i, j) =0

IF i = j THEN axisrotate(i, j) =1

NEXT j

NEXT i

IF c1 = 0 AND ¢2 = 0 THEN GOTO Position
axisrotate(l, 1) = cl * c2 / (squ * sq)
axisrotate(l, 2) = c2 * c3 / (squ * sq)
axisrotate(l, 3) = -sq / squ
axisrotate(2, 1) = -c2 / sq
axisrotate(2, 2) = cl / sq
axisrotate(2, 3) = 0
axisrotate(3, 1) = cl / squ
axisrotate(3, 2) = c2 / squ
axisrotate(3, 3) = c3 / squ

Position:
DIM newcubes(2, 2, 2, 2, 3)
FOR t =1 T0 2
FOR u=1T0 2
FOR v =1 TO 2
FORw =1T0 3
newcubes(1l, t, u, v, w) =0
newcubes(2, t, u, v, w) =0
FOR j =1TO 3
newcubes(l, t, u, v, ¥) = newcubes(l, t, u, v, w)
-> + cubes(1, t, u, v, j) * axisrotate(w, j)

newcubes(2, t, u, v, w) = newcubes(2, t, u, v, W)
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-> + cubes(2, t, u, v, j) * axisrotate(w, j)
NEXT j
NEXT w
NEXT v
NEXT u
NEXT t
SCREEN 12 ’set up color graphics screen
WINDOW (0, 0)-(600, 300) ’set up window to show screen
LOCATE 1
PRINT "Here is the cube pair you have chosen. In the
-> drawing the cube pair”
PRINT "is rotated so that the center of each cube is on
-> the vertical axis."
xcent = 300
zcent = 150
FOR j =1 TO0 2 ’draw the cubes
LINE (xcent + newcubes(j, 1, 1, 1, 1),
-> zcent + newcubes(j, 1,1, 1, 3))
-> -(xcent + newcubes(j, 1, 1, 2, 1),
-> zcent + newcubes(j, 1, 1, 2, 3))
LINE (xcent + newcubes(j, 1, 1, 1, 1),
-> zcent + newcubes(j, 1, 1, 1, 3))
-> -(xcent + newcubes(j, 1, 2, 1, 1),
-> zcent + newcubes(j, 1, 2, 1, 3))
LINE (xcent + newcubes(j, 1, 1, 1, 1),
-> zcent + newcubes(j, 1, 1, 1, 3))
-> -(xcent + newcubes(j, 2, 1, 1, 1),
-> zcent + newcubes(j, 2, 1, 1, 3))

LINE (xcent + newcubes(j, 1, 2, 2, 1),

-> zcent + newcubes(j, 1, 2, 2, 3))

-> -(xcent + newcubes(j, 1, 1, 2, 1),

-> zcent + newcubes(j, 1, 1, 2, 3))
LINE (xcent + newcubes(j, 1, 2, 2, 1),

-> zcent + newcubes(j, 1, 2, 2, 3))

-> -(xcent + newcubes(j, 1, 2, 1, 1),

-> zcent + newcubes(j, 1, 2, 1, 3))
LINE (xcent + newcubes(j, 1, 2, 2, 1),

-> zcent +newcubes(j, 1, 2, 2, 3))

-> -(xcent + newcubes(j, 2, 2, 2, 1),

-> 2cent + newcubes(j, 2, 2, 2, 3))
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LINE (xcent + newcubes(j, 2, 2, 1, 1),
-> zcent + nevcubes(j, 2, 2, 1, 3))
-> -(xcent + newcubes(j, 2, 2, 2, 1),
-> zcent + newcubes(j, 2, 2, 2, 3))
LINE (xcent + newcubes(j, 2, 2, 1, 1),
=-> zcent + newcubes(j, 2, 2, 1, 3))
-> -(xcent + newcubes(j, 1, 2, 1, 1),
-> zcent + newcubes(j, 1, 2, 1, 3))
LINE (xcent + newcubes(j, 2, 2, 1, 1),
-> zcent + newcubes(j, 2, 2, 1, 3))
-> -(xcent + newcubes(j, 2, 1, 1, 1),
-> zcent + newcubes(j, 2, 1, 1, 3))
LINE (xcent + newcubes(j, 2, 1, 2, 1),
-> zcent + newcubes(j, 2, 1, 2, 3))
-> -(xcent + newcubes(j, 2, 2, 2, 1),
-> zcent + newcubes(j, 2, 2, 2, 3))
LINE (xcent + newcubes(j, 2, 1, 2, 1),
-> zZcent + newcubes(j, 2, 1, 2, 3))
-> -(xcent + newcubes(j, 2, 1, 1, 1),
-> zcent + newcubes(j, 2, 1, 1, 3))
LINE (xcent + newcubes(j, 2, 1, 2, 1),
-> zcent + newcubes(j, 2, 1, 2, 3))
-> -(xcent + newcubes(j, 1, 1, 2, 1),
-> zcent + newcubes(j, 1, 1, 2, 3))
NEXT j
LOGCATE 25
measure =
PRINT
PRINT "Theoretical computation of probability may take
-> several minutes."
PRINT "Please type 1 to skip
-> or any other number not to skip."
PRINT "Do you wish to skip to empirical computation of
-> probability”;
INPUT skip

IF skip = 1 THEN GOTO empirical

CLS
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LOCATE 1

PRINT "The motion-invariant measure of planes separating
-> two cubes is the"

PRINT "sum of measures of the solitary separating wedges
-> with a minus or"

PRINT “"plus sign depending on whether the needle of the
-> wedge is an"

PRINT "edge of a cube or not respectively plus the sum of
-> the clustered”

PRINT "separating wedges such that the vertices of the
-> needle of the wedge"

PRINT "are from different cubes. The measure of the wedge
-> is half of the"

PRINT "length of the needle times the size of the angle.
-> See Ambartzumian’s"

PRINT "red book page 114 for analogous formula for convex
-> polyhedrons. "

PRINT

PRINT "The above measure is converted to a probability
-> measure by dividing by"

PRINT "the measure of planes hitting a sphere containing
d the two cubes.”

PRINT "This measure is 2 pi d where d is the diameter of
-> the sphere containing"

PRINT "the two cubes. See Ambartzumian’s red book
-> page 122."

PRINT

PRINT "We somewhat arbitrarily take d to be c+SQR(3)*s."

PRINT

measure = 0

progress = -1

FOR j1 = 1 TO 2 ’start compute theoretical probability

FOR t1 =1 TO 2

FOR ul = 1 TO 2 ’pick 4 vertices, compute normal vector

FOR v1 =1 TO 2

vertexl = 1000 * j1 + 100 * t1 + 10 * ul + vl

FOR j2 =1 TO 2

FOR t2 = 1 TO 2

FOR u2 = 1 TO 2

FOR v2 = 1 TO 2

CALL ProgressReport (progress)
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vertex2 = 1000 * j2 + 100 * t2 + 10 * u2 + v2
IF vertex2 <= vertexl THEN GOTO nextsecond

v121 = cubes(j1, t1, ul, vi, 1)

-> - cubes(j2, t2, u2, v2, 1)
v122 = cubes(j1, t1, ul, vi, 2)

-> - cubes(j2, t2, u2, v2, 2)
v123 = cubes(j1, ti, ul, vi, 3)

-> - cubes(j2, t2, u2, v2, 3)

length = SQR(v121 ~ 2 + v122 =~ 2 + v123 ~ 2)
IF j1 = j2 AND length >= 1.1 * s

-> THEN GOTO nextsecond
collinear = 0
FOR j3=1TO 2
FOR t3 =1T0 2
FOR u3 =1 T0 2
FOR v3 =1 TQ 2

CALL ProgressReport(progress)

vertex3 = 1000 * j3 + 100 * t3 + 10 * u3 + v3
IF vertex3 = vertexl THEN GOTO neksthird

IF vertex3 = vertex2 THEN GOTO neksthird

vil = cubes(j1, t1, ul, vi, 1)

-> - cubes(j3, t3, u3, v3, 1)
vi2 = cubes(j1, ti1, ul, vi, 2)

-> - cubes(j3, t3, u3, v3, 2)
vi3 = cubes(j1, ti1, ul, vi, 3)

-> - cubes(j3, t3, u3, v3, 3)
v21 = cubes(j2, t2, u2, v2, 1)

-> - cubes(j3, t3, u3, v3, 1)
v22 = cubes(j2, t2, u2, v2, 2)

-> - cubes(j3, t3, u3, v3, 2)
v23 = cubes(j2, t2, u2, v2, 3)

-> - cubes(j3, t3, u3, v3, 3)

11 = SQR(vil ~ 2 + v12 ~ 2 + v13 " 2)
12 = SQR(v21 ~ 2 + v22 ~ 2 + v23 " 2)
IF (11 + 12 - lemgth) ~ 2 < .000001

-> THEN GOTO nextsecond
ratio = 0
IF v21 <> 0 THEN ratio = vi1 / v21
IF v22 <> 0 THEN ratio = v12 / v22
IF v23 < 0 THEN ratio = vi3 / v23

IF (v11 - ratio * v21) =~ 2 + (v12 - ratio * v22) -~ 2
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-> + (v13 - ratio * v23) "~ 2 < .000001

-> THEN collinear =1

IF j1 = j2 AND collinear

neksthird:
NEXT v3
NEXT u3
NEXT t3
NEXT j3
FOR j3=1T0 2
FOR t3 =1T0 2
FOR u3 =1 TO 2
FOR v3 =1 TO 2

1 THEN GOTO nextsecond

CALL ProgressReport(progress)
vertex3 = 1000 * j3 + 100 * t3 + 10 * u3 + v3
IF vertex3 = vertexl THEN GOTO nextthird
IF vertex3 = vertex2 THEN GOTO nextthird

vl,

vl,

v2,

v2,

v2,

vl

cubes(j3,
2)
cubes(j3,
3)
cubes(j3,
1)
cubes(j3,
2)
cubes(j3,
3)
cubes(j3,

1/ v21

vi2 / v22
vi3 / va3

2 + (v12 - ratio
= 2 < .000001

vil = cubes(j1, ti1, ul, vi, 1)
->

v12 = cubes(j1, ti1, ul,
->

v13 = cubes(j1, ti1, ul,
->

v21 = cubes(j2, t2, u2,
->

v22 = cubes(j2, t2, u2,
->

v23 = cubes(j2, t2, u2,
->

ratio = 0

IF v21 <> 0 THEN ratio =

IF v22 <> 0 THEN ratio =

IF v23 <> 0 THEN ratio =

IF (vi1 - ratio » v21) ~
-> + (v13 - ratio * v23)
-> THEN GOTO nextthird

x1 = vi2 * v23 - v22 * vi3

x2 = v21 * vi3 - v11 * v23
x3 = vil = v22 - v21 * vi2
theta = pi / 2

phi =0

IF x3 > 0 THEN theta =

t3,

t3,

t3,

t3,

t3,

t3,

u3, v3, 2)
u3, v3, 3)
u3, v3, 1)

u3, v3, 2)

* v22) ~ 2

’compute 1st normal

ATN(SQR(x1 =~ 2 + x2 = 2) / x3)
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IF x3 < 0 THEN theta

-> = pi + ATN(SQR(x1 =~ 2 + x2 = 2) / x3)
IF x1 > O THEN phi = ATN(x2 / x1)
IF x1 = 0 AND x2 > O THEN phi = pi / 2
IF x1 = 0 AND x2 < O THEN phi = 3 * pi / 2

IF x1 < 0 THEN phi = pi + ATN(x2 / x1)

CALL SeparationCheck(theta, phi, cubes(), separation,
-> j1, t1, ul, vi, j2, t2, u2, v2, j3, t3, u3, v3)

IF separation = 0 THEN GOTO nextthird

FOR j4 =1 TO 2
FOR t4 = 1 TO 2
FOR u4 = 1 TO 2
FOR v4 = 1 TO 2
vertex4 = 1000 * j4 + 100 * t4 + 10 * ud4 + v4

IF vertex4 = vertexl THEN GOTO nextfourth
IF vertex4 = vertex2 THEN GOTO nextfourth
IF vertex4 <= vertex3 THEN GOTO nextfourth
CALL ProgressReport(progress)

vil = cubes(j1, t1, ul, vi1, 1)

-> - cubes(j4, t4, u4, v4, 1)
v12 = cubes(j1l, ti, ul, vi, 2)

-> - cubes(j4, t4, u4, v4, 2)
v13 = cubes(j1, t1, ul, vi, 3)

-> - cubes(j4, t4, u4, v4, 3)
v21 = cubes(j2, t2, u2, v2, 1)

-> - cubes(j4, t4, u4, v4, 1)
v22 = cubes(j2, t2, u2, v2, 2)

-> - cubes(j4, t4, ud, v4, 2)
v23 = cubes(j2, t2, u2, v2, 3)

-> - cubes(j4, t4, u4, v4, 3)
ratio = 0
IF v21 <> 0 THEN ratio = vi1 / v21
IF v22 <> 0 THEN ratio = v12 / v22
IF v23 <> 0 THEN ratio = vi13 / v23

IF (vil - ratio * v21) ~ 2 + (v12 - ratio * v22) ~ 2

-> + (v13 - ratio * v23) ~ 2 < .000001
-> THEN GOTO nextfourth
xx1 = vi2 * v23 - v22 * vi3

xx2
xx3

v2l * v13 - vi1 * v23
vil * v22 - v21 * vi2
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ratio = 0

IF xx1 <> O THEN ratio = x1 / xx1 ’get 2nd normal
IF xx2 <> 0 THEN ratio = x2 / xx2

IF xx3 <> 0 THEN ratio = x3 / xx3

IF (x1 - ratio # xx1) =~ 2 + (x2 - ratio * xx2) ~ 2

-> + (x3 - ratio * xx3) ~ 2 < .000001
-> THEN GOTO nextfourth
theta = pi / 2
phi = 0
IF xx3 > 0 THEN theta =
-> ATN(SQR(xx1 ~ 2 + xx2 ~ 2) / xx3)
IF xx3 < 0 THEN theta
-> = pi + ATN(SQR(xx1 ~ 2 + xx2 ~ 2) / xx3)

IF xx1 > 0 THEN phi = ATN(xx2 / xx1)
IF xx1 = 0 AND xx2 > O THEN phi = pi / 2
IF xx1 = 0 AND xx2 < O THEN phi = 3 * pi / 2
IF xx1 < O THEN phi = pi + ATN(xx2 / xx1)
CALL SeparationCheck(theta, phi, cubes(), separation,
-> j1, &1, ul, v1, j2, t2, u2, v2, j4, t4, u4, v4)
IF separation = 0 THEN GOTO nextfourth
dot = x1 * xx1 + x2 * xx2 + x3 * xx3
norms = (x1 =~ 2 +x2 - 2 +x3 " 2) *
-> (xx1 = 2 + xx2 = 2 +xx3 ~ 2)
kos = ABS(dot) / SQR(norms)
IF kos > .1 AND j1 = j2 AND j2 = j3 AND j3 = j4
-> THEN GOTQ nextfourth
schwarz = norms - dot = 2
IF schwarz < 0 THEN schwarz = 0
opp = SQR(schwarz)
IF dot <> O THEN angle = ABS(ATN(opp / dot))
IF dot = 0 THEN angle = pi / 2
IF j1 = j2 THEN sign = -1
IF j1 <> j2 THEN sign = 1
measure = measure + sign * angle * length
'LPRINT progress; vertexl; vertex2; vertex3; vertex4;
-> "length"”; length; "angle"; angle; "sign"; sign
GOTO nextsecond

2

nextfourth:
NEXT v4
NEXT u4
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NEXT t4
NEXT j4

nextthird:

NEXT v3
NEXT u3
NEXT t3
NEXT j3
nextsecond:
NEXT v2
NEXT u2
NEXT t2
NEXT j2
NEXT vi
NEXT ul
NEXT t1
NEXT j1

d =SQR(cl ~ 2+c2~ 2+ c3 " 2) +SQRA) *s

denom
CLS

PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT

PRINT
PRINT

empirical:

DO

=4 *pi=*d

"The standard separating measure ="; measure / 2

"The cubes are contained in a sphere of radius";
d/ 2
"Thus we take our theoretical probability to be the
conditional"
"probability that a plane separates the cubes given
that it hits"
"this sphere. Thus the theoretical"

"probability = measure / (4 * pi * r) =";
measure / (4 * pi * d)

PRINT
PRINT "Please type a number N to represent the

number of in pairs of cubes"

PRINT "to be randomly placed on a grid of parallel

planes order to"
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PRINT "compute the empirical probability that a

-> plane separates the cubes."
PRINT "(N must be a positive integer.)

-> How many pairs of cubes”;
INPUT it

LOOP UNTIL (INT(it) > O AND INT(it) = it)

d =SQR(cl ~ 2+ c2 -2+ c3 "~ 2) +SQR(3) * s
’d=37.3205081#

denom = 4 * pi * d 'finish theoretical probability
'"LPRINT "measure"; measure; "denom"; denom

prob = measure / denom

BEEP

BEEP

BEEP

xcenter =
ycenter
zcenter
FOR i =
FOR j =
FOR k =
FOR 1
xcenter = xcenter + newcubes(i, j, k, 1, 1)
ycenter = ycenter + newcubes(i, j, k, 1, 2)
zcenter = zcenter + newcubes(i, j, k, 1, 3)
NEXT 1

NEXT k

NEXT j

NEXT i

xcenter = xcenter / 16

ycenter = ycenter / 16

zcenter = zcenter / 16

’CLS

'PRINT xcenter

"PRINT ycenter

'PRINT zcenter

’INPUT anykey

DIM centcubes(2, 2, 2, 2, 3)

FOR i =1TQ 2

FOR j =1 TO 2

[ o R [ I |}
13- 0O0C
o0 oQ

N NN
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FOR k =1 TO 2
FOR 1 =1T0 2
centcubes(i, j, k, 1, 1) = newcubes(i, j, k, 1, 1)
- xcenter
centcubes(i, j, k, 1, 2) = newcubes(i, j, k, 1, 2)
- ycenter
centcubes(i, j, k, 1, 3) = newcubes(i, j, k, 1, 3)
- zcenter
NEXT 1
NEXT k
NEXT j
NEXT i
CLS
SCREEN 12 ’set up color graphics screen
WINDOW (0, 0)-(600, 300) ’set up window for screen
m=280/4d 'number of parallel planes
FORi=0T0n ’projection of i-~th
LINE (0, d * i)-(650, d * i), 14 ’plane in
NEXT i ‘color 14 (yellow)

* CIRCLE (300, 3 *d/ 2),d/ 2

' CIRCLE (300, 3*xd/ 2), d

LOCATE 3 ’i=0 is on the bottom of the screen

PRINT "To see the cubes clearly turn up the brightness
and contrast.”

L p——. —

count = 0

RANDOMIZE TIMER ’seed random number generator

FOR i =1 TO it ’throw i-th pair of cubes
x = RND(1) ’choose coordinates randomly

y = RND(i) ’RND(i) gives a random number betw 0 & 1
dx = d

IF dx > 280 THEN dx = 280

x = (560 - 2 # dx) * x + dx ’fit to screen
linenumber = (280 - 2 *+ d) \ d ’integer divide

IF linenumber < 1 THEN linenumber = 1

y = linenumber = d * y + d

sigma = 2 * pi * RND(i)

theta = pi * RND(i) ’set up rotation matrix for
phi = 2 = pi * RND(i) ’random orientation of cubes
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CALL RotationMatrix(sigma, theta, phi, rotate())

DIM cubesr(2, 2, 2, 2, 3)

FOR t =1 TO 2
FOR u=1TO 2
FOR v = 1 TO 2
FOR w =1T0 3

'find coordinates of the

’vertices of rotated cubes

cubesr(i, t, u, v, w) =0
cubesr(2, t, u, v, w) =0
FOR j = 1 TO 3
cubesr(1, t, u, v, W)

-> = cubesr(1, t, u, v, w) +

-> centcubes(l, t, u, v, j) * rotate(w, j)
cubesr(2, t, u, v, w)

-> = cubesr(2, t, u, v, w) +

-> centcubes(2, t, u, v, j) * rotate(w, j)
NEXT j
NEXT w
cubesr(i, t, u, v, 1)

-> = x + cubesr(l, t, u, v, 1)
cubesr(1, t, u, v, 2)

-> =y + cubesr(l, t, u, v, 2)
cubesr(2, t, u, v, 1)

-> = x + cubesr(2, t, u, v, 1)
cubesr(2, t, u, v, 2)

-> =y + cubesr(2, t, u, v, 2)
NEXT v
NEXT u
NEXT t

?

maxl = cubesr(1, 1, 1, 1, 2) ’check plane separates

minl = maxl 'really only concerned with
max2 = cubesr(2, 1, 1, 1, 2) ’y-coordinates
min2 = max2 ’since grid is parallel to xz-plane

FOR t =1 TO 2
FOR u=1T0 2
FOR v =1TO0 2

IF maxl < cubesr(i, t, u, v, 2)

-> THEN maxi = cubesr(l, t, u, v, 2)
IF minl > cubesr(l, t, u, v, 2)
-> THEN minl = cubesr(l, t, u, v, 2)

IF max2 < cubesr(2, t, u, v, 2)
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-> THEN max2 = cubesr(2, t, u, v, 2)
IF min2 > cubesr(2, t, u, v, 2)
-> THEN min2 = cubesr(2, t, u, v, 2)
NEXT v
NEXT u
NEXT t
KOLOR = 8
IF INT(min1 / d) > INT(max2 / d) OR
-> INT(max1 / d) < INT(min2 / d) THEN KOLOR = 0

IF KOLOR = 0 THEN count = count + 1
IF KOLOR = 0 THEN KOLOR = (count MOD 14) + 9
IF KOLOR > 15 THEN KOLOR = KOLOR - 15

p J— ————— -

cir = (cubesr(1, 1, 1, 1, 1)
-> + cubesr(1, 2, 2, 2, 1)
-> + cubesr(2, 1, 1, 1, 1)
-> + cubesr(2, 2, 2, 2, 1)) / 4
c2r = (cubesr(1, 1, 1, 1, 2)
-> + cubesr(1, 2, 2, 2, 2)
-> + cubesr(2, 1, 1, 1, 2)
-> + cubesr(2, 2, 2, 2, 2)) / 4
'CIRCLE(c1r,c2r),d/2,KOLOR
-> ’circle rotated cube pair
'CIRCLE(x+c1/2,y+c2/2),d/2,KOLOR
-> ’circle before rotation
FOR j =1TO 2 'draw the cubes
LINE (cubesr(j, 1, 1, 1, 1), cubesr(j, 1, 1, 1, 2))-
-> (cubesr(j, 1, 1, 2, 1),
-> cubesr(j, 1, 1, 2, 2)), KOLOR
LINE (cubesr(j, 1, 1, 1, 1), cubesr(j, 1, 1, 1, 2))-
-> (cubesr(j, 1, 2, 1, 1),
-> cubesr(j, 1, 2, 1, 2)), KOLOR
LINE (cubesr(j, 1, 1, 1, 1), cubesr(j, 1, 1, 1, 2))-
-> (cubesr(j, 2, 1, 1, 1),
-> cubesr(j, 2, 1, 1, 2)), KOLOR

LINE (cubesr(j, 1, 2, 2, 1), cubesr(j, 1, 2, 2, 2))-
-> (cubesr(j, 1, 1, 2, 1),
-> cubesr(j, 1, 1, 2, 2)), KOLOR

LINE (cubesr(j, 1, 2, 2, 1), cubesr(j, 1, 2, 2, 2))-
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-> (cubesr(j, 1, 2, 1, 1),
-> cubesr(j, 1, 2, 1, 2)), KOLOR
LINE (cubesr(j, 1, 2, 2, 1), cubesr(j, 1, 2, 2, 2))-
-> (cubesr(j, 2, 2, 2, 1),
-> cubesr(j, 2, 2, 2, 2)), KOLOR
LINE (cubesr(j, 2, 2, 1, 1), cubesr(j, 2, 2, 1, 2))-
-> (cubesr(j, 2, 2, 2, 1),
-> cubesr(j, 2, 2, 2, 2)), KOLOR
LINE (cubesr(j, 2, 2, 1, 1), cubesr(j, 2, 2, 1, 2))-
-> (cubesr(j, t, 2, 1, 1),
-> cubesr(j, 1, 2, 1, 2)), KOLOR
LINE (cubesr(j, 2, 2, 1, 1), cubesr(j, 2, 2, 1, 2))-
-> (cubesr(j, 2, 1, 1, 1),
-> cubesr(j, 2, 1, 1, 2)), KOLOR
LINE (cubesr(j, 2, 1, 2, 1), cubesr(j, 2, 1, 2, 2))-
-> (cubesr(j, 2, 2, 2, 1),
-> cubesr(j, 2, 2, 2, 2)), KOLOR
LINE (cubesr(j, 2, 1, 2, 1), cubesr(j, 2, 1, 2, 2))-
-> (cubesr(j, 2, 1, 1, 1),
-> cubesr(j, 2, 1, 1, 2)), KOLOR
LINE (cubesr(j, 2, 1, 2, 1), cubesr(j, 2, 1, 2, 2))-
-> (cubesr(j, 1, 1, 2, 1),
-> cubesr(j, 1, 1, 2, 2)), KOLOR
NEXT j
LOCATE 1 ’summarize results at top of screen
PRINT count; "separation(s) in "; i; "tries."
PRINT "Empirical probability =";
-> count / i; " "
FOR j =1 TO 10
-> 'this loop checks 10 times if user pressed key
IF INKEY$ <> "" THEN STOP
NEXT j
NEXT i 'done with the i-th pair
BEEP
BEEP
BEEP
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LOCATE 30
PRINT "Press any key to continue.
-> Are you ready to continue";
INPUT anykey
CLs
LOCATE 1 ’summarize results at top of screen
PRINT count; "separation(s) in "; it; "tries."
PRINT "Empirical probability =";
-> count / it; °® "
PRINT "Estimated standard error =";
-> SQR((count * (it - count))
-> / (it = 3)); " "
IF prob <> 0 THEN PRINT "Theoretical probability =";
-> prob

SUB ProgressReport (progress)
progress = progress + 1
percent = (100 * progress) \ 3040
LOCATE 19
PRINT "Computing theoretical probability . . .
-> very roughly "; percent; "/ completed"
END SUB

SUB RotationMatrix (sigma, theta, phi, rotate())
rotate(1, 1) = COS(phi) * COS(theta) * COS(sigma) -

-> SIN(phi) » SIN(sigma)
rotate(1, 2) = -COS(phi) * COS(theta) * SIN(sigma) -
-> SIN(phi) * COS(sigma)

rotate(1, 3)
rotate(2, 1)

-C0S(phi) * SIN(theta)
SIN(phi) * COS(theta) * COS(sigma) +

-> CO0S(phi) * SIN(sigma)
rotate(2, 2) = -SIN(phi) * COS(theta) * SIN(sigma) +
-> COS(phi) * COS(sigma)

rotate(2, 3)
rotate(3, 1)
rotate(3, 2)
rotate(3, 3)
END SUB

-SIN(phi) * SIN(theta)
SIN(theta) * COS(sigma)
-SIN(theta) * SIN(sigma)
COS (theta)

SUB SeparationCheck (theta, phi, cubes(), separation,
-> j1, t1, ul, vi, j2, t2, u2, v2, j3, t3, u3, v3)
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’check if the plane separates the cubes

DIM rotate(3, 3)

DIM test(2, 2, 2, 2, 3)

rotate(1, 1) = COS(theta) * COS(phi)

rotate(1, 2) = COS(theta) * SIN(phi)

rotate(l, 3) = -SIN(theta)

rotate(2, 1) = -SIN(phi)

rotate(2, 2) = COS(phi)

rotate(2, 3) =0

rotate(3, 1) = SIN(theta) * COS(phi)

rotate(3, 2) = SIN(theta) * SIN(phi)

rotate(3, 3) = COS(theta)

countiMax =

countimin =

count2Max =

count2min =

FOR t =1 TO 2
FOR u=1T02

FOR v=1T02
FORw =1 TO 3

test(1, t, u, v, W)
test(2, t, u, v, w)
FOR j =1 TO 3
test(1l, t, u, v, w)

O O O O

0
0

I

test(l, t, u, v, w) +

-> cubes(1, t, u, v, j) * rotate(w, j)
test(2, t, u, v, w) = test(2, t, u, v, w) +

-> cubes(2, t, u, v, j) * rotate(w, j)
NEXT j
NEXT w
NEXT v
NEXT u
NEXT t

zMax = test(j1, t1, ul, vi, 3)
IF zMax < test(j2, t2, u2, v2, 3)

-> THEN zMax =test(j2, t2, u2, v2, 3)
IF zMax < test(j3, t3, u3, v3, 3)
-> THEN zMax = test(j3, t3, u3, v3, 3)

zmin = test(j1, t1, ul, vi, 3)
IF zmin > test(j2, t2, u2, v2, 3)

-> THEN zmin = test(j2, t2, u2, v2, 3)
IF zmin > test(j3, t3, u3, v3, 3)
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-> THEN zmin = test(j3, t3, u3, v3, 3)
FORt =1T0 2
FORu=1T0 2
FOR v =1T0O 2
IF test(1, t, u, v, 3) <= zMax

-> THEN countiMax = countiMax + 1
IF test(1, t, u, v, 3) >= zmin

-> THEN countimin = countimin + 1
IF test(2, t, u, v, 3) <= zMax

-> THEN count2Max = count2Max + 1
IF test(2, t, u, v, 3) >= zmin

-> THEN count2min = count2min + 1
NEXT v
NEXT u
NEXT t

separation = 0
IF (((countiMax = 8) AND (count2min = 8))

-> OR ((countimin = 8) AND (count2Max = 8)))
-> THEN separation =1
END SUB
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