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This talk is mostly on joint work with Calin Chindris of U. Missouri [CK17], and the last
theorem is joint work with Andrew T. Carroll of Depaul, Chindris, and Jerzy Weyman of
U. Connecticut [CCKW17]. More detailed references and background can be found in our
cited preprints.

1. Motivation

Throughout, K is a field and A a finite-dimensional (associative) K-algebra.

Central Problem: Classify finite-dimensional representations of A, up to isomorphism.

For most A, it seems that no list or algorithm to solve this problem is possible (this can
be made precise using model theory, see work of M. Prest). Here is an alternative approach.

Geometric view: Construct algebraic varieties whose points parametrize isoclasses of
representations, and study their geometric structure.

This has inherent limitations which can be made precise in the language of moduli prob-
lems, see Newstead’s notes for example. Some intuition for these limitations can be de-
veloped through the following thought experiment which uses only linear algebra. Assume
K = K and that the characteristic of K is zero from now on.

Motivating example/Informal exercise: Let A = K[x] (infinite dimensional, but
illustrates the main idea). Isomorphism classes of d-dimensional representations are in
bijection with conjugacy classes of d × d matrices, so are classified by Jordan canonical
form.
(1) Understand why no algebraic variety can “continuously” parametrize all these isoclasses,
for d ≥ 2. In scheme-theoretic language, you will always end up with a “non-separated”
space because different conjugacy classes can have the same characteristic polynomial.
(2) Instead, parametrize isoclasses of a dense subset of the matrix space. For example,
matrices with distinct eigenvalues are dense, and these isoclasses are parametrized by Kd/Sd
(unordered d-tuples of distinct elements of K– this is an algebraic variety). There are other
solutions, for example using rational canonical form.

Another example appeared in Kenny Brown’s talk: the natural parametrization of iso-
classes of simple reps in his setup leads to a non-separated scheme, but if one restricts to
the Azumaya locus, one gets a nice parametrization of an open, dense subset.

2. Moduli spaces of representations

The category of finite-dimensional representations of any A as in our assumptions is
equivalent to the category of representations of a quotient of a path algebra of a quiver,
A = KQ/I. So without loss of generality, we can take A = KQ/I. Let d be a dimension
vector for Q; we can consider d ∈ K0(A), the Grothendieck group of A. This gives rise to
an affine algebraic variety rep(A,d) which parametrizes reps of class d along with a choice

1



of basis (the analogue of the matrix space in the motivating example above). It is a closed
subvariety of a product of matrix spaces.

Remarks: (1) The choice of basis means that isoclasses are in bijection with orbits in
rep(A,d) under some group, not points. So this is not a variety which “classifies” represen-
tations.
(2) In contrast to the matrix space in the motivating example, rep(A,d) may not be irre-
ducible and can have essentially any kind of singularities (as A and d vary).

To get rid of the choice of basis, we need to restrict to some subset of representations; the
concept of semistability is the analogue of restricting to operators with distinct eigenvalues.
Let θ ∈ HomZ(K0(A),Z) be a weight, approximately equivalent to the concept of a stability
condition.

Definition 2.1. Given θ as above, define the full subcategory of θ-semistable representa-
tions of A by

rep(A)ssθ = {M rep(A) | θ([M ]) = 0, and ∀N ≤M : θ([N ]) ≤ 0}.
This is an abelian subcategory of rep(A). Let rep(A)sθ be the colletion of simple objects of
rep(A)ssθ , whose objects are called θ-stable representations of A. �

Geometrically, for each d the inclusions rep(A,d)sθ ⊆ rep(A,d)ssθ ⊂ rep(A,d) are both
open, and thus these subsets are dense when nonempty. Mumford’s geometric invariant the-
ory (GIT) gives a quotient morphism rep(A,d)ssθ �M(A,d)ssθ , whose target is a projective
variety known as the moduli space of θ-semistable representations of dimension vector d.
Its points are in bijection with certain isoclasses of representations of A, namely the ones
of class d which are semisimple in rep(A)ssθ . We want to study the structure of these va-
rieties, but we must be careful what we study, since any projective variety whatsoever can
be realized as M(A,d)ssθ for some A,d, θ.

3. Results

3.1. A decomposition theorem. Assume from now on that C ⊆ rep(A,d) is a closed
subvariety such thatM(C)ssθ is an irreducible component ofM(A,d)ssθ (all components are
indeed of this form, so this is no loss of generality).

Definition 3.1. A collection (Ci ⊆ rep(A,di),mi ∈ Z>0)
r
i=1 is a θ-stable decomposition of

C if there is a dense subset of θ-semistable M ∈ C such that grθ(M) (the associated graded
object in the category rep(A)ssθ ) has exactly mi θ-stable summands from each Ci. �

It is a fact that a θ-stable decomposition exists for C as in our assumption. We can
think of such decomposition as geometric Jordan-Holder factors for C (w.r.t. θ). The main
theorem of [CK17] says that these give a lof of info about the geometry of moduli spaces.

Theorem 3.2 (joint with Chindris). For any finite-dimensional A,d, θ, C as above, there
exists a finite, birational morphism

Ψ: Sm1M(C1)
ss
θ × · · · × SmrM(Cr)

ss
θ →M(C)ssθ

“decomposing” the right hand side. If M(C)ssθ is a normal variety, then Ψ is an isomor-
phism.

Here, for a variety Z, we write SkZ = (
∏k
i=1 Z)/Sk for the k-th symmetric power of Z.

At the level of underlying sets, the statement is almost obvious once properly understood, so
the main content of the theorem is that the map is a morphism of varieties. When A = KQ,
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each M(C)ssθ is always normal; the isomorphism in this case is essentially equivalent to a
theorem of Derksen and Weyman from 2006.

3.2. Application to moduli of tame algebras.

Definition 3.3. An algebra A is tame if, for each fixed d, almost all isomorphism classes
of d-dimensional indecomposables fall into finitely many one K parameter families. �

For example, A = K[x] is tame, as are path algebras of quivers of affine Dynkin type
(see James Zhang’s talk). Although any projective variety can be realized as a M(C)ssθ if
we allow A to vary over all algebras, there are a number of results in the literature showing
that moduli spaces associated to tame algebras tend to be nicer. The following corollary of
our decomposition theorem above makes this more precise.

Corollary 3.4. Every M(C)ssθ for a tame algebra is birational to some PN (i.e. a rational
variety).

Special biserial algebras are a prominent class of tame algebras whose indecomposables
admit a nice combinatorial description. They arise naturally in modular group representa-
tion theory and categorification of cluster algebras from surfaces, for example. We were able
to completely determine isomorphism types of moduli spaces of special biserial algebras, and
it turns out they are as nice as possible.

Theorem 3.5 (joint with Carroll, Chindris, Weyman). EveryM(C)ssθ for a special biserial
algebra is isomorphic to Pm1 × · · · × Pmr for some positive integers mi.

Proving this theorem involves reducing to some nice subset of C using another theorem
from [CK17] (which was not mentioned in this talk), then showing these C are normal using
work of Lusztig connecting them with affine Schubert varieties. The isomorphism of the
theorem is the one of the decomposition theorem above.
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