Algebra Extravaganza Temple University Philadelphia, PA

Cohomological properties of certain quiver flag varieties

Mee Seong Im United States Military Academy

July 7, 2017

This is a joint work in-progress with Brian Allen.

A **quiver** $Q = (Q_0, Q_1)$ is a finite directed graph, where Q_0 is the set of vertices and Q_1 is the set of arrows.

Let $\beta = (\beta_1, \dots, \beta_{Q_0}) \in \mathbb{N}_{\geq 0}^{Q_0}$, a dimension vector.

A **representation of a quiver** assigns a finite-dimensional vector space to each vertex and a linear map to each arrow.

Let

$$Rep(Q,\beta) := \bigoplus_{a \in Q_1} \operatorname{Hom}_{\mathbb{C}}(W(\beta_{ta}), W(\beta_{ha})),$$

where $W(\beta_i)$ is a β_i -dimensional complex vector space. It has a natural (change-of-basis) group action by $\mathbb{G}_{\beta} = \prod_{i \in Q_0} GL_{\beta_i}(\mathbb{C})$.

We say $Rep(Q, \beta)$ is the **representation space** of a quiver.

Filtered representation space.

Let $\gamma^{(1)}, \gamma^{(2)}, \dots, \gamma^{(M)} = \beta$ be a sequence of dimension vectors. Then

$$F^{\bullet} \operatorname{Rep}(Q, \beta) := \{ (A_a)_{a \in Q_1} : A_a(W(\gamma_{ta}^{(i)})) \subseteq W(\gamma_{ha}^{(i)}) \\ \text{for all } 1 \le i \le M, a \in Q_1 \}.$$

$F^{\bullet}Rep(Q,\beta)$ is the filtered representation space for Q and β .

If $P_i \subseteq GL_{\beta_i}(\mathbb{C})$ is the group of automorphisms preserving the filtration of vector spaces at vertex *i*, then we define

$$\mathbb{P}_{\beta} := \prod_{i \in Q_0} P_i,$$

which acts as a change-of-basis on $F^{\bullet}Rep(Q,\beta)$. So there is a parabolic group action \mathbb{P}_{β} on $F^{\bullet}Rep(Q,\beta)$.

If we have a complete filtration of vector spaces over each vertex, we will write \mathbb{B}_{β} instead of \mathbb{P}_{β} .

Universal quiver flag.

We denote

$$\mathsf{Fl}_{\gamma^{\bullet}}(\beta) := \prod_{i \in Q_0} \mathsf{Fl}_{\gamma^{\bullet}_i}(\beta_i),$$

the product of usual flag varieties on the vector space W(i) parametrizing flags of subspaces

$$0 \subseteq U_i^{(1)} \subseteq U_i^{(2)} \subseteq \ldots \subseteq U_i^{(M)} = W(i), \text{ where } \dim(U_i^{(j)}) = \gamma_i^{(j)}, i \in Q_0.$$

We denote $U^{\bullet} := \{0 \subseteq U^{(1)} \subseteq U^{(2)} \subseteq \ldots \subseteq U^{(M)}\}$, the set of flags of subspaces.

The universal quiver flag is defined as

$$\begin{aligned} \textit{Fl}_{\gamma^{\bullet}}^{\textit{Q}}(\beta) &= \{(\textit{W},\textit{U}^{\bullet}) \in \textit{Rep}(\textit{Q},\beta) \times \textit{Fl}_{\gamma^{\bullet}}(\beta) : \textit{W}(a)\textit{U}_{\textit{ta}}^{(i)} \subseteq \textit{U}_{\textit{ha}}^{(i)} \\ & \text{for each } a \in \textit{Q}_{1}, 1 \leq i \leq M \}. \end{aligned}$$

Projections from the universal quiver flag.

Also denote the universal quiver flag as $Rep(Q, \beta)$, where we have natural projections p_1 and p_2 into appropriate factors

$$\mathsf{Rep}(Q,\beta) \xleftarrow{p_1} \widetilde{\mathsf{Rep}(Q,\beta)} \xrightarrow{p_2} \mathsf{Fl}_{\gamma} \bullet (\beta).$$

Properties about morphisms p_1 and p_2

- p_1 and p_2 are \mathbb{G}_β -equivariant projections,
- a generic fiber of p₁ over W: a product U[●] of flags of vector spaces on U^(M) such that WU[●] ⊆ U[●] (so p₁ is projective),
- ► a generic fiber of p₂ over a flag: a homogeneous vector bundle, i.e., the set of all W such that WU[•] = U[•] (so p₂ is flat).
- ► The fibers of *p*₁ are called **quiver flag varieties**,
- ▶ the fibers of *p*₂ are called **filtered quiver representations**.

Quiver G-S resolution & Springer resolution.

Fix
$$Q = (Q_0, Q_1)$$
, where

$$Q_0 = \{v_0, v_1^1, v_2^1, \dots, v_{\ell_1}^1, v_1^2, v_2^2, \dots, v_{\ell_2}^2, \dots, v_{i_1}^1, v_2^1, \dots, v_{\ell_i}^1, v_2^1, \dots, v_1^k, v_2^k, \dots, v_{\ell_k}^k\}$$
and $Q_1 = \{a_0^1, a_1^1, \dots, a_{\ell_1}^1, a_0^2, a_1^2, \dots, a_{\ell_2}^2, \dots, a_0^k, a_1^k, \dots, a_{\ell_k}^k\}$, satisfying
 $v_0 \xleftarrow{a_0^i} v_1^i \xleftarrow{a_1^i} v_2^i \xleftarrow{a_2^j} v_3^i \xleftarrow{a_3^i} \dots \xleftarrow{a_{\ell_{\ell_i}-1}^i} v_{\ell_i}^i \xleftarrow{a_{\ell_i}^i} v_0$ for $1 \le i \le k$.
Also let $M = 2N$. Fix sequences of dimension vectors $\gamma^{(i)}$ so that
 $\gamma^{(2i)} = (i, i, \dots, i)$ for each $1 \le i \le N$ and
 $\gamma^{(2i-1)} = (i-1, i-1, \dots, i-1)$ for each $1 \le i \le N$.
Note that $\beta = (N, N, \dots, N)$.

With Q and β from the previous slide, $\widetilde{Rep}(Q, \beta)$ is called the **generalized Grothendieck-Springer resolution** corresponding to a complete flag. It will be denoted as $\widetilde{Rep}(Q, \beta)_{G-Spr}$.

Denote $\mathfrak{b}_{Q_1} := F^{\bullet} \operatorname{Rep}(Q, \beta)$.

Proposition

The second projection $\widetilde{Rep(Q,\beta)} \xrightarrow{p_2} Fl_{\gamma} \cdot (\beta)$ is \mathbb{G}_{β} -equivariant, inducing an isomorphism $\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} \mathfrak{b}_{Q_1} \cong \widetilde{Rep(Q,\beta)}$.

Proposition

A generic fiber of $\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} \mathfrak{b}_{Q_1} \xrightarrow{p_1} Rep(Q, \beta)$ consists of $(N!)^{Q_0}$ points.

Generalized Springer resolution.

Continue to let
$$M = 2N$$
. Fix $\gamma^{(i)}$ so that

$$\gamma^{(2i)} = (i, i, \dots, i)$$
 for each $1 \le i \le N$ and
 $\gamma^{(2i-1)} = (i-1, i-1, \dots, i-1, i)$ for each $1 \le i \le N$.

(2)

For the 1-Jordan quiver,

$$\widetilde{Rep(Q,\beta)} \cong T^*(GL_N(\mathbb{C})/B) \cong GL_N(\mathbb{C}) \times_B \mathcal{N},$$

the cotangent bundle of the flag variety (the Springer resoln of the nilpotent cone \mathcal{N}).

For the general quiver and satisfying (2), $\widehat{Rep(Q, \beta)}$ a **generalized Springer resolution** of the nilpotent cone \mathcal{N}_{Q_1} in $Rep(Q, \beta)$, where $\mathcal{N}_{Q_1} = \{(W(a_0^1), \dots, W(a_{\ell_k}^k)) : W(a_0^1 \cdots a_{\ell_k}^k) \text{ is nilpotent}\}.$

Resolution of singularities.

Now fix the filtration of vector spaces in (2) w.r.t. the standard basis. Then $F^{\bullet}Rep(Q,\beta)$ is contained in the product of upper triangular matrices. Let

$$\mathfrak{n}_{\mathcal{Q}_1} = \mathfrak{b}^{\oplus(\mathcal{Q}_1-1)} \oplus \mathfrak{n},$$

(3)

where $\mathfrak{n} \cong \mathfrak{gl}_n/\mathfrak{b}^*$, the set of strictly upper triangular matrices.

Proposition

 $T^*(\mathbb{G}_{\beta}/\mathbb{B}_{\beta}) \cong \mathbb{G}_{\beta} imes_{\mathbb{B}_{\beta}} \mathfrak{n}_{Q_1}$ is a resolution of singularities of \mathcal{N}_{Q_1} .

Corollary

The morphism $T^*(\mathbb{G}_\beta/\mathbb{B}_\beta) \xrightarrow{\phi} \mathcal{N}_{Q_1}$ is generically finite.

The morphism $\mathcal{T}^*(\mathbb{G}_\beta/\mathbb{B}_\beta) \xrightarrow{\phi} \mathcal{N}_{Q_1}$ is also called **generalized** Springer desingularization.

Diagram of morphisms.

Summary

We have the diagram of morphisms, where $\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} \mathfrak{n}_{Q_1} \hookrightarrow \mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} \mathfrak{b}_{Q_1}$ is an inclusion of subbundles: $ightarrow \mathbb{G}_{\beta} imes_{\mathbb{B}_{\beta}} \mathfrak{b}_{Q_{1}}$ $\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} \mathfrak{n}_{Q_1} \subset$ $\rightarrow Rep(Q,\beta)$

Weights of quiver flag varieties.

For a fixed \mathbb{G}_{β} , let $\mathbb{T}_{\beta} = \prod_{i \in Q_0} T_i$, where T_i is the maximal torus consisting of diagonal matrices in $GL_{\beta_i}(\mathbb{C})$ for each $i \in Q_0$. Let $\operatorname{diag}(t_{i1}, t_{i2}, \ldots, t_{iN}) \in T_i$ for each $i \in Q_0$. Denote $X(\mathbb{T}_{\beta})$ to be the character group of \mathbb{T}_{β} , where each character $\epsilon_{i,j} \in X(\mathbb{T}_{\beta})$ is defined as

$$\epsilon_{i,j}(t_{v_0,1},\ldots,t_{v_0,N},\ldots,t_{i,1},\ldots,t_{i,N},\ldots,t_{v_{\ell_k}^k},1,\ldots,t_{v_{\ell_k}^k},N) = t_{i,j}$$

for each $i \in Q_0$, $1 \le j \le N$. Then $\{\epsilon_{ij}\}_{i \in Q_0, 1 \le j \le N}$ forms a standard basis for $X(\mathbb{T}_\beta)$, which gives an isomorphism of weight lattices $X(\mathbb{T}_\beta) \cong \mathbb{Z}^{|Q_0|N}$. Dominant weights of $X(\mathbb{T}_\beta)$ are defined to be

$$X^+(\mathbb{T}_{\beta}) \cong \{ \vec{\lambda} = (\lambda^{v_0}, \lambda^{v_1^1}, \lambda^{v_2^1}, \dots, \lambda^{v_{\ell_k}^k}) \in \mathbb{Z}^{|Q_0|N} :$$

 $\lambda^i = (\lambda_{i,1} \ge \lambda_{i,2} \ge \dots \ge \lambda_{i,N}) \}.$

Cohomology of line bundles.

Lemma

Let
$$\vec{\kappa} = \sum_{j=0}^{N} (\epsilon_{v_0,j} - \epsilon_{v_{\ell_k}^k,j})$$
. Then

$$\mathcal{K}(\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} (\mathfrak{n}_{Q_{1}} \times \mathbb{C}_{\vec{\lambda}})) \simeq \mathcal{L}_{\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} (\mathfrak{n}_{Q_{1}} \times \mathbb{C}_{\vec{\lambda}})} (\mathbb{C}_{-\vec{\lambda}-\vec{\kappa}}), \tag{4}$$

where $K(\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} (\mathfrak{n}_{Q_{1}} \times \mathbb{C}_{\vec{\lambda}}))$ is the canonical line bundle of $\mathbb{G}_{\beta} \times_{\mathbb{B}_{\beta}} (\mathfrak{n}_{Q_{1}} \times \mathbb{C}_{\vec{\lambda}}).$

Proposition

Given $ec{\lambda} \in X^+(\mathbb{T}_eta)$,

$$H^{0}(\mathbb{G}_{\beta}/\mathbb{B}_{\beta},\mathcal{L}_{\mathbb{G}_{\beta}/\mathbb{B}_{\beta}}(\mathbb{C}_{-\vec{\lambda}}))\cong V^{*}_{\vec{\lambda}}=V^{*}_{\lambda^{v_{0}}}\otimes V^{*}_{\lambda^{v_{1}^{1}}}\otimes \cdots \otimes V^{*}_{\lambda^{v_{\ell_{k}}^{k}}},$$

where $V_{\lambda^i}^*$ is the dual of the $GL_N(\mathbb{C})$ -irreducible representation V_{λ^i} with highest weight λ^i .

Higher cohomology.

Theorem

We have

$$\mathcal{H}^{i}(T^{*}(\mathbb{G}_{eta}/\mathbb{B}_{eta}),\mathcal{L}_{T^{*}(\mathbb{G}_{eta}/\mathbb{B}_{eta})}(\mathbb{C}_{-ec{\lambda}}))=0$$

for any $\vec{\lambda}$ and for all i > 0.

Theorem

Given a generalized Grothendieck-Springer resolution $\widetilde{\textit{Rep}(Q,\beta)}_{\rm G-Spr},$ we have

$$H^{i}(\widetilde{\operatorname{Rep}(Q,\beta)}_{\mathrm{G-Spr}},\mathcal{L}_{\widetilde{\operatorname{Rep}(Q,\beta)}_{\mathrm{G-Spr}}}(\mathbb{C}_{-\vec{\lambda}}))=0$$

for any $\vec{\lambda}$ and for all i > 0.

Why are flag Hilbert schemes interesting?

- ► The adjointness of a monoidal functor from the symmetric monoidal category Coh_{FHilbⁿ(C)} of coherent sheaves on the flag Hilbert scheme FHilbⁿ(C) to the non-symmetric monoidal category SBim_n of Soergel bimodules produces a 1-1 correspondence between the Euler characteristic of a sheaf on the flag Hilbert scheme with the Hochschild homology of a braid (Gorsky-Negut-Rasmussen, 2016).
- ► Flag Hilbert schemes are interesting in their own right:
 - birationality of $\operatorname{FHilb}^n(\mathfrak{X})$,
 - singular locus of $\operatorname{FHilb}^n(\mathfrak{X})$,
 - irreducible components of $FHilb^n(\mathfrak{X})$,
 - Hilbert function of $\operatorname{FHilb}^n(\mathfrak{X})$.

Flag Hilbert schemes.

Constructions

The **flag Hilbert scheme** on \mathbb{C} or \mathbb{C}^2 parametrizes full flags of ideals:

$$FHilb^{n}(\mathbb{C}) := \{ I_{n} \subseteq \ldots \subseteq I_{1} \subseteq I_{0} = \mathbb{C}[x, y] : \dim_{\mathbb{C}} \mathbb{C}[x, y] / I_{i} = i, \\ ideals \text{ supported on } y = 0 \},$$

$$\operatorname{FHilb}^{n}(\mathbb{C}^{2}) := \{ I_{n} \subseteq \ldots \subseteq I_{1} \subseteq I_{0} = \mathbb{C}[x, y] : \dim_{\mathbb{C}} \mathbb{C}[x, y] / I_{i} = i \}.$$

ADHM description

Let *B* be lower triangular matrices in $GL_n(\mathbb{C})$, $\mathfrak{b} = \text{Lie}(B)$, and let \mathfrak{n} be nilpotent matrices in \mathfrak{b} . Then

 $\begin{aligned} & \operatorname{FHilb}^{n}(\mathbb{C}) = \{(X, Y, v) \in \mathfrak{b} \times \mathfrak{n} \times \mathbb{C}^{n} : [X, Y] = 0, X^{a}Y^{b}v \operatorname{span} \mathbb{C}^{n}\}/B \\ & \operatorname{FHilb}^{n}(\mathbb{C}^{2}) = \{(X, Y, v) \in \mathfrak{b} \times \mathfrak{b} \times \mathbb{C}^{n} : [X, Y] = 0, X^{a}Y^{b}v \operatorname{span} \mathbb{C}^{n}\}/B \end{aligned}$

Facts about flag Hilbert schemes.

Facts

• We have $\operatorname{FHilb}^n(\mathbb{C}^2) \twoheadrightarrow \operatorname{Hilb}^n(\mathbb{C}^2)$, sending

$$(I_n \subseteq \ldots \subseteq I_1 \subseteq I_0) \mapsto I_n.$$

• We have $\operatorname{FHilb}^n(\mathbb{C}^2) \twoheadrightarrow \mathbb{C}^{2n}$, sending

$$(I_n \subseteq \ldots \subseteq I_1 \subseteq I_0) \mapsto (x_1, \ldots, x_n, y_1, \ldots, y_n),$$

where $(x_j, y_j) = \sup(I_{j-1}/I_j)$.

- ▶ FHilbⁿ(C²) is a closed subscheme of Hilbⁿ(C²) × Hilbⁿ⁻¹(C²) × ··· × Hilb¹(C²) × Hilb⁰(C²).
- FHilbⁿ(ℂ), FHilbⁿ(ℂ²) are singular for n ≫ 0, reducible, their dimensions ≫ expected dimensions.

Let *B* be upper triangular matrices in $GL_n(\mathbb{C})$ and let $\mathfrak{b} = \operatorname{Lie}(B)$. Identify $T^*(\mathfrak{b} \times \mathbb{C}^n) \cong \mathfrak{b} \times \mathfrak{b}^* \times \mathbb{C}^n \times (\mathbb{C}^n)^*$. Consider the moment map

$$T^*(\mathfrak{b} \times \mathbb{C}^n) \xrightarrow{\mu_B} \mathfrak{b}^* \cong \mathfrak{gl}_n/\mathfrak{n}^+, \text{ where } (X, Y, v, w) \mapsto [X, Y] + vw.$$

We define

$$\mu_B^{-1}(0)/B := \{ (X, Y, v, w) \in \mathfrak{b} \times \mathfrak{b}^* \times \mathbb{C}^n \times (\mathbb{C}^n)^* : [X, Y] + vw = 0, \\ X^a Y^b v \operatorname{span} \mathbb{C}^n \}/B.$$

Conjecture

There is a birational map $\mu_B^{-1}(0)/B \longrightarrow \text{FHilb}^n(\mathbb{C}^2)$.

