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ABSTRACT. We review existing work on the connection between tilting and derived equiv-
alences of finite dimensional algebras. Then we will recall the notion of strong tilting, as
introduced by Auslander and Reiten. Strong tilting provides particularly effective contravari-
ant bridges among the module categories involved. We proceed to collaborations of the
speaker with A. Dugas and M. Saorin. The main results show: Any truncated path algebra
has a strong tilting module. Moreover, if anchored in a truncated path algebra, the process
of strong tilting allows for iteration and eventually becomes stationary. The algebras in the
corresponding sequence of consecutive tilts can be described with precision in terms of their
predecessors.

Let A = KQ/I be a path algebra modulo relations, where @ is a quiver and K a field.
Moreover, set n = rank Ko(A); i.e., Q has n vertices, say ey, ...e,, corresponding to the
isomorphism classes S1, ..., 5, of simple modules.

The main point of my lecture is to discuss algebras which result from a given one by
way of what is called “strong tilting”. The plan is to study this strong form of tilting
and to advance the homological understanding of truncated path algebras in tandem. But
before I go into any detail, I'll try to place the specific problems I'll address in a somewhat
broader perspective.

I. ENVIRONMENT

It has become clear that, in exploring algebras of wild representation type, the most
promising tack is to mix different techniques and to tesselate the partial pictures that arise
from the various lines of approach. Let me remind you of some of the mainstays among
the techniques towards this end:

e Geometric methods. They only serve as motivation in this lecture, to be re-encountered
at the end.

e Homological methods. One strategy along this line is to approximate a given represen-
tation of A by a member of a more thoroughly understood class of representations. Today,
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I'll address “best approximations” of arbitrary modules by modules of finite projective
dimension, i.e., by modules in the following subcategory of A-mod:

P<® = P<®(A-mod) = {X € A-mod | pdim X < co}.

Best approximations, in a sense which I’ll shortly make precise, follow the model of pro-
jective covers. But typically, one has a much larger class of approximating objects at one’s
disposal than just the projective modules, and hence one may reasonably expect a closer
fit of the approximating objects to the modules on which one tries to zero in.

e Functorial methods. They are closely connected to homological methods. First in
line, there are the Morita equivalences and Morita dualities which have been used since
our relative representation-theoretic antiquity. For algebras that exhibit similar features,
but fail to be Morita equivalent or dual, partial equivalences (co- or contravariant) have
proved effective towards shifting information from one module category to another. By a
“partial equivalence” I mean a functor which induces equivalences on certain subcategories
of the module categories involved.

Presently, the focus is on tilting functors. Just like Morita equivalences, they are induced
by bimodules over the two algebras that are being compared. But in contrast to Morita
theory, the technique of tilting evolved in dozens of incremental steps. It was triggered by
the success encountered by Bernstein-Gelfand-Ponomarev in the early 70’s, in comparing
the path algebra of a given acyclic quiver with that of a quiver obtained by reversing
certain arrows. The resulting functors between the module categories of the corresponding
path algebras now go by the name of Bernstein-Gelfand-Ponomarev reflection functors.
Originally, they served the purpose of simplifying the proof of Gabriel’s theorem on the
representation type of a path algebra. Subsequently, the underlying idea was raised to a
more abstract level and went through many stages of generalization. First, it was picked up
by Auslander-Platzeck-Reiten, then a major leap occurred in papers by Brenner-Butler and
Happel-Ringel; the arguments were smoothed out by Bongartz. But these first generations
of the theory exclusively addressed tilting modules of projective dimension at most 1. The
departure from this restriction was ushered in by Miyashita who broadened the method
to tilting objects of arbitrary finite projective dimension. At this point too many players
entered the game to make it reasonable to continue a systematic list.

However, the deeper reasons for the strong links among certain subcategories of rep-
resentations over two algebras which are connected via a tilting bimodule was recognized
only about 15 years after the Bernstein-Gelfand-Ponomarev reflection functors had made
their entrance. Namely, Happel observed that, whenever two algebras are tied together
by a tilting bimodule, their derived categories are triangle equivalent. This observation,
in turn, led to a succession of generalizations, first by Cline-Parshall-Scott, then, most
notably by Rickard and Keller. As Rickard first proved, two algebras, say A and K, are
derived equivalent if and only if there exists a tilting object in the derived category of A
such that A is isomorphic to the endomorphism ring of this object.

The derived development gave tilting theory another big push: For one thing, Beilinson
and Bernstein-Gelfand-Gelfand showed that the category of coherent sheaves over projec-
tive space is derived equivalent to the module category of a finite dimensional algebra.
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Another reason for the burst of derived activity in the finite dimensional community lies
in the fact that derived equivalences found immediate applications to group algebras. In
particular, Broué formulated a conjecture that relates blocks of finite dimensional group
algebras with abelian defect groups to their Brauer correspondents by way of derived
equivalences. This conjecture subsumes and unifies a string of previous conjectures.

II. WHAT IS TILTING?

Definition. 1. T € A-mod is called a tilting module if

(i) pdim T < oc;

(ii) Ext’y (T, T) = 0 for all i > 0;

(iii) The projectives in A-mod have finite right resolutions by objects in add(7T) := {X |
X C® T7 r € N}. More precisely, there exists an exact sequence

O=>A—-Ty —--- =T, —0

for some m such that all T; belong to add(T).

Comment: The number of isomorphism classes of indecomposable direct summands of
any tilting module T" over A is equal to the rank n of the Grothendieck group of A.

2. Call a tilting module AT basic if no indecomposable direct summand of 7" occurs
with a multiplicity > 1, i.e., T" has precisely n pairwise non-isomorphic indecomposable
direct summands.

Suppose T is a tilting module. Comparison algebra: A = (End,(7))°P. Then ATy is

obviously a bimodule. Not so obviously, the situation is symmetric in A and K, meaning
that T is a tilting module in mod-A and A = Endx (7).

The nub of the matter: If T is a tilting bimodule, the functors Homy (7', —), M &5 —
and their derived functors provide equivalences when restricted to suitable subcategories
of A-mod and A-mod. (A familiar example: T € A-mod is tilting if T is a projective
generator. In that case, A is Morita equivalent to A.) In addition, there are weak clones
of Morita dualities resulting from a tilting bimodule 57T, which were first discovered by
Miyashita. Such dualities are far less thoroughly explored than the covariant equivalences
that link up portions of the two module categories involved. I will place primary emphasis
on them in my lecture.

As already mentioned: If A and A result from each other via tilting, the derived cate-
gories D?(A-mod) and D?(A-mod) are equivalent as triangulated categories. In particular,
all derived invariants are tilting invariants.

Invariants under derived equivalence [Rickard, Happel, Keller, Rouquier, HZ-
Saorfn]: Not surprisingly, many homological invariants of A are preserved by derived
equivalence, such as cyclic homology and Hochschild cohomology. Moreover, finiteness
of global and finitistic dimensions goes through; however, the exact values of these dimen-
sions do not. Further derived invariants are Ky(A), as well as the center and the identity
component of the outer automorphism group of A.

If A and A are tilting equivalent, one may obtain explicit bounds relating the homological
dimensions of A to those of A in terms of the tilting object.
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III. STRONG TILTING AND CONTRAVARIANT FINITENESS

Typically, there is a plethora of tilting modules over a given finite dimensional algebra,
and representation theorists have tried to introduce some order into the zoo. There are dis-
tinguished specimens (beyond the projective generators which induce Morita equivalences)
which were first put under a spotlight by Auslander and Reiten who dubbed them strong
tilting modules. Coming from a different viewpoint, Happel and Unger again encountered
the strong tilting modules as noteworthy objects: Namely, Happel-Unger equipped the
full class of basic tilting modules over A with a natural partial order and noticed that,
existence provided, a basic strong tilting module is the smallest element of this poset. (By
way of comparison: 5 A is the largest element.)

Strong tilting. A tilting module AT is strong, if it is a relatively injective object in the
category P<>°(A-mod), i.e., Exty(—,T)|p<~ = 0.
Comment: In case of existence, there is a unique basic strong tilting module over A.

A first example: If A has finite global dimension, then the minimal injective cogenerator
T € A-mod is the basic strong tilting module for A. As is well known, such a tilting module
T induces the standard duality Homp (—,7) =2 Homg (—, K) : A-mod — mod-A.

To see the parallel with more general instances of strong tilting, observe: If T' is any
strong tilting module, then T is an injective cogenerator for the category P<°°(A-mod),
and each object in P<°°(A-mod) has finite relative Ext-injective dimension. In other words,
the classical setting is reproduced for the subcategory P<°°(A-mod) of A-mod.

The status quo of the “strong” theory: The strengthened connections between algebras
which are equivalent under strong tilting have not been fully exposed yet as far as I can
see. In fact, the main focus has been on covariant equivalences among subcategories of
module categories; tilting theory emerged as a generalization of Morita equivalence after
all. On closer inspection it turns out that dualities are the bridges that most obviously gain
prominence under strong tilting. Another retarding factor lies in the sparsity of nontrivial
examples so far. The reason for the small size of the playground lies in the fact that strong
tilting modules don’t always exist and that it is typically nontrivial to verify (or refute)
existence.

Here is the punch line regarding existence: Auslander-Reiten proved that A-mod has a
strong tilting module iff P<°°(A-mod) is contravariantly finite.

And here is what this means:

Contravariant finiteness. [Auslander-Smalg, Enochs]

1. M € A-mod is said to have a (right) P<°°-approzimation if there exists a homomor-
phism ¢ : A — M such that A € P<°°(A-mod) and every map in Homp (P<°°, M) factors
through ¢.

If M has some P<°°-approximation, then there exists a minimal one A(M) say, which
is unique up to isomorphism.

2. In case all left A-modules have P<°°-approximations, we say that P<°(A-mod) is
contravariantly finite.
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Clearly, P<°°(A-mod) is contravariantly finite whenever gldim A < oo; in that case, the
minimal approximation of any A-module M is M itself (the identity map on M, more
precisely). On the other extreme, if the left finitistic dimension of A is 0, then P<° is in
turn contravariantly finite; in that case, the minimal approximation of a module is just its
projective cover. However, situations where this concept really has traction lie strictly in
between these extremes.

Benefits of contravariant finiteness of P<°°(A-mod):

The importance of the property is due to the following facts: (a) The category P<°°(A-mod)
has internal Auslander-Reiten sequences in case it is contravariantly finite, and (b) con-
travariant finiteness of P<>°(A-mod) is a marvel of a situation from a homological view-
point: Indeed, if P<°°(A-mod) is contravariantly finite, then the modules of finite pro-
jective dimension can be characterized in terms of finitely many building blocks, namely
the minimal approximations of the simple modules. Moreover, the big and little finitistic
dimensions coincide and are finite in this case. Arbitrary modules of finite projective di-
mension are simply direct limits of finitely generated modules of finite projective dimension,
etc. (¢) Most notably in the present context [Auslander-Reiten]:

A-mod has a strong tilting module <= P<*°(A-mod) is contravariantly finite.

The algebras with contravariantly finite P<°°-categories are abundant; but the condition
is tough to verify or refute. I quote a remark from a paper of Auslander and Reiten
(1991): “Little is known about the general question of when the subcategory of modules
of finite projective dimension is contravariantly finite.” The first example for failure of this
condition was given by Igusa and Todorov, still in the 90’s. The situation has improved
in the meantime, but not decisively enough to anchor the theory in a solid environment to
which it applies. In particular, there are hardly any major classes of algebras all of which
have contravariantly finite P<°°-categories. It is a bit as with transcendental numbers:
They are everywhere dense, but it’s nontrivial to pin down specific ones.

So, with regard to strong tilting, the upshot of the discussion is this: What one needs
for a better understanding of this mode of comparison of two algebras is a broader class of
algebras A for which contravariant finiteness of P<°°(A-mod) is confirmed and a structural
description of the corresponding strong tilting modules is available.

IV. SPECIFIC GOALS TO BE ADDRESSED IN THE FOLLOWING

e Improve the understanding of strong tilting.

Our starting point is essentially due to Miyashita. If 7% is a tilting module which is strong
on both sides, then the functors Homy (—,T’) and Homgz(—,T') induce inverse dualities

P<®(A-mod) +— P<*®°(mod-A).

e Advance the theory of truncated path algebras (i.e., of algebras K@/I, where I is
generated by all paths of some fixed length) to a level matching that of split hereditary
finite dimensional algebras (i.e., of path algebras K@), where @ is an acyclic quiver).



6 BIRGE HUISGEN-ZIMMERMANN

Clearly, every path algebra of an acyclic quiver is a truncated path algebra. In fact,
the role played by truncated path algebras with respect to arbitrary path algebras modulo
relations parallels the role played by the hereditary algebras relative to algebras whose
Gabriel quivers contain no oriented cycles.

Namely: If A = KQ/I for an arbitrary quiver () and admissible ideal I C K@, then A
is a quotient of a unique truncated path algebra A that has quiver () and the same Loewy
length as A. The incentive for following up on this analogy: In studying a A-module M,
it turns out to be very helpful to use the embedding A-Mod < A-Mod and move back
and forth between the A- and A-structures of M.

Starting point [Dugas-HZ]: For any truncated path algebra A, the category P<>°(A-mod)
is contravariantly finite.

On the other hand, there are plenty of differences between truncated algebras and hered-
itary algebras. So the theory of truncated path algebras (which subsumes that of hereditary
algebras) is necessarily more complex. This fact already surfaced in the geometric setting
and is equally pronounced on the homological side of the picture. For instance, the global
dimension of a truncated path algebra is infinite whenever () has oriented cycles, and arbi-
trary discrepancies between the left and right finitistic dimensions can be realized within
this class of algebras.

V. STRONGLY TILTING TRUNCATED PATH ALGEBRAS

From now on
A = KQ/(all paths of length L + 1), L > 1 fixed.

In this situation, A-Mod, the category of left A-modules, depends only on () and the
Loewy length L + 1 of A. Hence it is to be expected that the combinatorics of the quiver
should play a prominent role in any analysis of this category. In fact, a mere glance at
the quiver ) allows to pinpoint the vertices that give rise to the simple left A-modules of
finite projective dimension; what is decisive is the placement of the corresponding vertices
relative to the oriented cycles.

A vertex e; of Q is called precyclic if there is a path in ) which starts in e; and ends on
an oriented cycle; dually, e; is postcyclic in case there is a path that starts on an oriented
cycle and ends in e;. Finally, we call e; critical if e; is both pre- and postcyclic. We
extend this terminology to the indecomposable projective and simple left A-modules that
correspond to e;.

It is a cinch to verify the following: A simple left A-module has finite projective dimen-
sion if and only if it is non-precyclic.

First an old result of Dugas-HZ.

Theorem A. Suppose A is a truncated path algebra. Then P<°°(A-mod) is contravari-
antly finite, and the minimal P<°°(A-mod)-approrimations of the simple modules are
known personally. Moreover, there is an explicit description of the basic strong tilting
module T'. In_particular, T" is constructible from @ and L. The corresponding strongly
tilted algebra A= KQ/I can in turn be determined from these data.
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Remark and convention. We have Kq(A) = Ko(A), whence the quiver Q has the same
number of vertices as (), say €1, ..., €,. It turns out that there is a canonical correspondence
between the vertices of ) and those of (:j (I omit detail.) On referring to the €;, I will
tacitly assume that the order of the lineup reflects this correspondence, so as to make the
following unambiguous: An idempotent e; € A is a critical vertex of (:j if e; is critical in
Q; in that case, the projective 'eVZ-K and its simple quotient are also called critical. Caveat:
This convention is not in agreement with the role played by the e; relative to the quiver
@; the latter quiver teems with oriented cycles in general (see below).

Definition. e The idempotent of A which plays the key role in the homological discussion

of Mod-A is
= Y &
e; critical

e The critical core of M € Mod-A is the subfactor V/U, where V = MﬁK and U
is the annihilator in M of the left ideal Afi. In particular, top(V/U)i = top(V/U) and
soc(V/U)p = soc(V/U); if dim M < oo, then V/U is, in fact, the subfactor of maximal
dimension of M with the property that all simple summands of top(V/U) & soc(V/U) are
critical.

Example. Consider A = KQ/(all paths of length 3), where @ is

4 )

]

Rt T

Clearly, e, eo are the only critical vertices of (). The strong basic tilting module in
P<>°(A-mod) is T = @, , T;, as pinned down by the following tree graphs:

1 2 3 3 2 3 3 1 1 4
| | | |/ N /] |

2 & 1 & 1 o 1 1/1 @& 1 4 2 @ 2 5

| | | /" XI/ - [\

1 2 2 2 2 4 2 2 5 1 1 6
Ty T, Ty T, = A(E,) Ts = A(Es) Ty = A(Eg)
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The indecomposable projective right A-modules &;A:

1 2 3 N 4 N
° 1 2
6/4\5 S 3/2\3
2 4 1 S
| N\
) 3 4 ) 4 1
| N\
1 2 4 4 5) 4
ap /o1
02\ \)
3 2 4
(03] aq
a9 ‘
3
) 6
1 4 1\5
/N JINC
6 4 T 3 6 4 T 4
\ R
) 3 ) 3
1 1

The critical cores of the &;A are easy to identify; e.g., that of &1 A is the quotient of & A
by the uniserial submodule with composition factors Sy, Sy, Ss.

Observe that the analogies between hereditary algebras and truncated path algebras
emerge more clearly on the level of strong tilts. Indeed, whenever an indecomposable
projective right A-module P has a critical composition factor, then P contains a copy of
one of the critical indecomposable projectives &1 A and ’52]{; in fact, all critical composition
factors of A5 are confined to such copies of the critical projectives. This is not just a fluke,
but is true in general.

The obvious next step is to settle the following N
Question: Is the tilting module T% strong also in mod-A?
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Answer: No in general. In fact, Dugas and I showed that the answer is positive precisely
when all precyclic vertices of ) are also postcyclic. This partial answer begs a

Followup Question: Namely, does mod-A have its own strong tilting module, i.e.,
is 77<°°(m0d—]§) always contravariantly finite even when T% fails to be a strong tilting
module?

Recently, Saorin and I settled the issue affirmatively. To make headway, one requires a
thorough understanding of the A-modules of finite projective dimension.

Let me start with the simple right A-modules §Z = 'eviK/ €; J.

Theorem B. pdim :9'; < oo precisely when e; is noncritical.

This fact may be seen as a first indication that the homological picture is symmetrized
on passage from A to A. From Theorem B we are led to the following characterization of
the right modules of finite projective dimension over A.

Theorem C. For M € Mod—K, the following are equivalent:

e pdim Mf\ < 00.

o Mﬁ is projective as a right IAfi-module, i.e., Mﬁ = D., Critical(éﬁxzz)ﬂ for suitable
cardinals ;.

e The critical core ofM s a direct sum of copies of the critical cores of the A

Theorem C allows us to answer the question of contravariant finiteness of P<°°(mod—K)
in the positive.

Theorem D. The category 73<°°(m0d-K) 18 always contravariantly finite in mod-A.
Moreover, the minimal P<°°(mod-A)-approximations of the S; and the basic strong tilt-
ing module T € mod-A can be determined from Q) and I. (There is a theoretical description

which allows for construction of these modules.)
So how does this game continue?

Let A = EndK(TV). Is the tilting bimodule /:\Tv % strong on both sides? The answer pro-

vides the strongest evidence so far for my assertion that moving from A to A symmetrizes
the original algebra from a homological viewpoint.

Theorem~E. YES.

Indeed, XTK 1s a tilting module which is strong on both sides. In particular, the Hom-
functors Homx(—,f) and Hom=(—,T) induce inverse dualities
A

P<*®(mod-A) <> P<*(A-mod),
and [:\ >~ A

Final remark. To link up with a comment made at the outset: These homological connec-
tions should provide a good platform from which to explore those irreducible components
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of the module varieties of A, K, A which generically parametrize objects of finite projective
dimension.

Return to the example. The basic strong tilting module T’ in P<°°(mod-A) has the
following graph:

5 6 6 4 4 6
ANV4
1 2 2
/
6 4 ® 5 @& 5 o
2 1 1
N
5 4 5 4
N
1 2 4 2
3
6 4 6 4 6 4
2 2 2
o 5 e 6
[ ]
1
4 i5
2

Here the dotted pools indicate linear dependencies.



