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We begin with some joint work with Lutz Hille and Sibylle Schroll

K a field.
Q a finite quiver
KQ the path algebra.

KQ has K –basis, B, the set of finite paths in Q.
Multiplication of paths is concatenation or 0.

The free associative algebra on n variables is isomorphic to the
path algebra whose quiver is n loops at a vertex.

Every finite dimensional K -algebra, K algebraically closed, is
Morita equivalent to some KQ/I with JN ⊆ I ⊆ J2, where
J = 〈arrows〉
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KQ/I is a monomial algebra if I can be generated by paths and I
is called a monomial ideal.

Properties of monomial algebras:
1. There is an algorithm to construct minimal projective
resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
2. The finitistic dimension conjecture is true for monomial
algebras. ( G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
3. Cartan determinant conjecture holds (Wilson, 1983)
4. Know syzygies (Huisgen-Zimmermann, 1991)
5. Complete description of Koszul, D-Koszul monomial algebras
(G.-Huang, 1995 , G. - Marcos -Mart́ınez-Villa - Zhang, 2004 )
6. Complete description of the Ext-algebra Ext∗Λ(Λ/J,Λ/J)
(G.-Zacharia, 1994)
7. I has a unique minimal generating set of paths
8. The unique minimal generating set is the reduced Gröbner basis
(G. 1997)
9. There is a simple algorithm to determine if a monomial algebra
is quasi-hereditary.(G.-Schroll, 2017)



KQ/I is a monomial algebra if I can be generated by paths and I
is called a monomial ideal.

Properties of monomial algebras:

1. There is an algorithm to construct minimal projective
resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
2. The finitistic dimension conjecture is true for monomial
algebras. ( G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
3. Cartan determinant conjecture holds (Wilson, 1983)
4. Know syzygies (Huisgen-Zimmermann, 1991)
5. Complete description of Koszul, D-Koszul monomial algebras
(G.-Huang, 1995 , G. - Marcos -Mart́ınez-Villa - Zhang, 2004 )
6. Complete description of the Ext-algebra Ext∗Λ(Λ/J,Λ/J)
(G.-Zacharia, 1994)
7. I has a unique minimal generating set of paths
8. The unique minimal generating set is the reduced Gröbner basis
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Main ideas

(I). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra
A = KQ/〈T 〉, consider the set of algebras Λ = KQ/I such that
the associated monomial algebra is A.
Whoa!!!

I will define the associated monomial algebra soon.
Open questions: (1) (Auslander) Find a categorical description of
a monomial algebra.
(2) Given KQ/I , find a criterion to determine if KQ/I is
isomorphic to a monomial algebra.
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We recall some well-known definitions.
Let P1, . . . ,Pm be the indecomposable projective modules vΛ.
Cartan matrix CΛ of Λ:

CΛ = (ci ,j)

where ci ,j = dimKHom (Pi ,Pj) (Λ finite dimensional)

global dimension of Λ : gldim(Λ) = sup { pd(M)|M ∈ Λ−mod}
where pd(M) is the projective dimension of M.

Theorem (Eilenberg)

A a finite dimensional with gldim(A) <∞⇒ det(CA) = ±1.

Conjecture (Cartan determinant conjecture)

A a finite dimensional with gldim(A) <∞⇒ det(CA) = +1.
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Let AMon = KQ/〈T 〉 be the associated monomial of an algebra
A = KQ/I . Most of the properties described below can be found in
“On the homology of quotients of path algebras”, G.-Anick, 1987.

1. dimK (A) = dimK (AMon)
2. A finite dimensional, then gldim(A) ≤ gldim(AMon).
3. The Betti numbers of the “order resolutions” of 1 dimensional
simple modules are the same.
4. If dimK (AMon) <∞, then CA = CAMon

and hence the Cartan
determinant holds for A if gl. dim(AMon) <∞.
5. A and AMon have the “same” K -basis of paths.
6. If T is a set of paths of length 2, then A and AMon are Koszul
algebras. [G.-Huang]
7. If AMon is quasi-hereditary, then so is A. ( G.-Schroll)
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The variety

Let T be a set of paths in B such that if p, q ∈ T and p 6= q, then
p 6 |q. (T is called tip-reduced)

Set A = KQ/〈T 〉.

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety V(T ) whose points are in
one-to-one correspondence with the algebras Λ such that A is the
associated monomial algebra of Λ. The monomial algebra A
corresponds to the point (0) = (0, 0, . . . , 0) ∈ V(T ).

We freely view this correspondence as an identification.

Note that every algebra of the form KQ/I corresponds to a point
in some V(T ).

It’s time to define the associated monomial algebra.
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It’s time to define the associated monomial algebra.
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A brief journey into the world of Gröbner bases

Let � be a well-order on B that preserves multiplication.

That is, for p, q, r , s ∈ B,
1. if p � q then pr � qr , if both 6= 0.
2. if p � q then sp � sq , if both 6= 0.
3. if p = qrs, then p � r .

If x =
∑

p∈B αpp ∈ KQ, then

Tip(x) = largest p ocurring in x .

If X ⊆ KQ, then

Tip(X ) = {Tip(x) | x ∈ X}

Nontip(X ) = B \ Tip(X ).
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Gröbner bases

Let I be an ideal in KQ. A set of elements G in I is a Gröbner
basis for I with respect to � if

〈Tip(G)〉 = 〈Tip(I )〉.

〈Tip(I )〉 is called the associated monomial ideal of I and
KQ/〈Tip(I )〉 is the associated monomial algebra of KQ/I .
We sometimes write IMon for 〈Tip(I )〉 and (KQ/I )Mon for
KQ/〈Tip(I )〉 = KQ/IMon.
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Q be the quiver ◦ f //

g
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◦
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◦ i // ◦ j // ◦

I = 〈fh− gi , hj〉. If gi � fh then

Tip(I ) = 〈gi , hj , gij〉

Then a Gröbner basis for I is {gi − fh, hj}.

If fh � gi then Tip(I ) = {fh, hj , gij} and the Gröbner basis for I is
{gi − fh, hj , gij}
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Basic properties

1. If G is a Gröbner basis for I , then G generates I .

2. IMon = 〈Tip(I )〉, being a monomial ideal, has a unique smallest
set of generators that are paths. This set is tip-reduced.
3. The Fundamental Lemma If I is an ideal in KQ, then

KQ ' I ⊕ SpanK (Nontip(I )),

as K -vector spaces.
Thus, we may identify KQ/I with SpanK (Nontip(I )).

There is a special Gröbner basis for an ideal that is unique.
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1. If G is a Gröbner basis for I , then G generates I .
2. IMon = 〈Tip(I )〉, being a monomial ideal, has a unique smallest
set of generators that are paths.

This set is tip-reduced.
3. The Fundamental Lemma If I is an ideal in KQ, then

KQ ' I ⊕ SpanK (Nontip(I )),

as K -vector spaces.
Thus, we may identify KQ/I with SpanK (Nontip(I )).
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There is a special Gröbner basis for an ideal that is unique.



The reduced Gröbner basis

Given an ideal I ⊆ KQ, IMon is a monomial ideal, and hence has a
unique (tip-reduced) minimal generating set T of paths. Let
N = Nontip(Tip〈T 〉)

For each t ∈ T , by the Fundamental Lemma, there exist unique
gt ∈ I and nt ∈ SpanK (N ), such that

t = gt + nt , or gt = t − nt

Setting G = {gt | t ∈ T }, we have:
1. Tip(G) = T and G ⊂ I .
2. G is a Gröbner basis for I
〈Tip(G)〉 = 〈Tip(T )〉 = 〈Tip(I )〉 = IMon

G is called the reduced Gröbner basis of I with respect to � and is
unique.
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2. G is a Gröbner basis for I
〈Tip(G)〉 = 〈Tip(T )〉 = 〈Tip(I )〉 = IMon
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Thus, V(T ) corresponds to the algebras KQ/I having reduced
Gröbner bases G with Tip(G) = T .

A brief outline of why V(T ) is a variety.

Given T , set N = B \ Tip(〈T 〉) = Nontip(〈T 〉).

For each t ∈ T , set

Nt = {n ∈ N | n‖t, `(n) ≥ 1, t � n}

Let
D =

∑
t∈T
|Nt | and A = KD

.
Write elements of A as tuples (c) = (ct,n) where t ∈ T , n ∈ Nt ,
all but a finite number of entries are nonzero.
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Given (c) = (ct,n) ∈ A, let H be the ideal generated by

H = {t −
∑
n∈Nt

ct,nn | t ∈ T }

For (c) to be in V(T ), H must be the reduced Gröbner basis of H.

Theorem (Bergman, G, Mora)

Keeping the above notation, H is the reduced Gröbner basis of H
if and only if all overlap relations completely reduce to 0.
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Example

Let Q be ◦ c //

a

��

◦ f //

d
��

◦ i //

g

��

◦
j

��
◦ b // ◦ e // ◦ h // ◦

with a � b � · · · � j Suppose

T is {ab, be, de, eh, gh}.

Then H = {ab − Xcd , be, de − Yfg , eh, gh − Zij}.
Overlaps: ab and be, de and eh

The first overlap relation is −Xcde which reduces to −XYcfg ;
yeilding XY = 0.
The second overlap relation is −Yfgh which reduces to −YZfij ;
yeilding YZ = 0.

Thus V(T ) is the zero set of the ideal (XY ,YZ ) in K [X ,Y ,Z ].
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Group-graded algebras

There is a graded version of the variety of algebras.

Let Γ be a group and W : Q1 → Γ. We call W a weight function.

W extends to B by W (a1a2 · · · an) = W (a1) · · ·W (an) and
W (v) = 1Γ.

KQ is Γ-graded by KQ = ⊕γ∈Γ(KQ)γ where (KQ)γ is the
K -span of the paths of weight γ.

If Λ = KQ/I has an induced Γ-grading if and only if I can be
generated by weight homogeneous elements.

Fact: If I can generated by weight homogeneous elements, then
the reduced Gröbner basis is composed of weight homogeneous
elements.
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Note that if T is a set of paths, then KQ/〈T 〉 has an induced
weight grading (for any weight function).

Given t ∈ T , change the definition of Nt to

NW
t = {n ∈ N | n‖t, `(n) ≥ 1, t � n,W (n) = W (t)}.

and A = KD where D =
∑

t∈T |NW
t |.

Again let HW = {ht | ht = t −
∑

n∈NW
t

ct,nn}. Note that each ht

is weight homogeneous and Tip(HW ) = T .

Thus KQ/〈HW 〉 has an induced weight grading.
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Soooo,

Define VW (T ) be the points (c) = (ct,n) with t ∈ T and n ∈ NW
t

such that HW is the reduced Gröbner basis of the ideal it
generates.

Theorem
Let Γ be a group and W : Q1 → Γ be a weight function and
T ⊆ B.
1. There is a one-to-one correspondence between the points
(c) = (ct,n) ∈ VW (T ) and weight induced graded algebras
Λ = KQ/I with IMon = 〈T 〉.
2. VW (T ) is an affine algebraic variety.

Given a Γ-graded K -algebra Λ = KQ/I , where I generated by
weight homogeneous elements for some weight function W , there
is some set of paths T such that Λ corresponds to a point in
VW (T ).
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Strong Koszul algebras; (G. 2016)

Recall that Λ = KQ/I is a Koszul algebra if the Ext-algebra
Ext∗Λ(Λ/r,Λ/r) is generated in degrees 0 and 1, where r = J/I .

If Λ is a Koszul algebra, then I can be generated by quadratic
elements.

Taking W : Q1 → Z by W (a) = 1, then every Koszul algebra is
positively Z-graded.

Theorem (G.-Huang)

If I is an ideal with a quadratic Gröbner basis, then KQ/I is a
Koszul algebra.

We say Λ = KQ/I is a strong Koszul algebra if it has a quadratic
Gröbner basis.
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Fixing W : Q1 → Z to be W ≡ 1,

and T to be a set of paths of length 2 then

1. Every point in VW (T ) corresponds to a strong Koszul algebra
2. The algebras in VW (T ) are all the same dimension and have
the same basis
3. *The order resolution for one dimensional simple modules for
each algebran VW (T ) is graded minimal and they have the same
Betti numbers.
4. If each NW

t is finite, then the global dimension of each algebra
is the same and there is a finite algorithm to determine
gl. dim(KQ/〈T 〉).
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Varieties that contain commutative polynomial rings

R = K{x1, . . . , xn}/〈{xjxi − xixj | i < j}〉. Here Q is one vertex
and n loops.

Take xn � xn−1 � · · · � x1. Then {xjxi − xixj | j > i} is a
quadratic Gröbner basis.
Thus R is a strong Koszul algebra.
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We have R corresponds to a point in VW (T ) where
T = {xjxi | j > i}.

Hence N = {xa1
1 xa2

2 · · · xan
n | a1, . . . an ∈ Z≥0}.

Every algebra Λ = KQ/I in VW (T ) is strong Koszul, has basis N ,
and pdΛ(K ) = n with Betti numbers of the order resolution the
same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K [x , y ], T = {yx}.

With y � x , NW
yx = {xy , x2} Thus VW (T ) = K 2 since there are

no overlap relations.

gyx = yx − Axy − Bx2

B = 0,A 6= 0, 1: quantum affine planes;A = 0 all isomorphic
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n=3

Length lex ordering. R = K [x , y , z ] with z � y � x
Then T = {zy , zx , yx} and N = {x iy jzk | i , j , k ≥ 0}

gzy = zy − Ayz − By 2 − Cxz − Dxy − Ex2

gzx = zx − Fyz − Gy 2 − Hxz − Ixy − Jx2

gyx = yx − Lxz −Mxy − Px2

Thus V(T ) is a variety in K 13

There is one overlap relation

gzyx − zgyx

Obtain equations in 13 variables, some of which are degree 4.
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There are two ways to apply these results.

1. Have a particular algebra in mind and study the variety(ies) it
lies in.

2. Have a particular monomial algebra and study the algebras in its
variety.

Another useful tool, is specialization; i.e., fixing the values of some
of the coefficients ct,n that occur. This is done by adding
appropriate polynomials of the form

xt,n − αt,n

to the ideal of the variety.

Again we get an affine algebraic subvariety of V (that need not
contain (0)).
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Admissible ideals

Given a set of tip-reduced paths T , then I = 〈T 〉 is admissible if
Jm ⊆ I ⊆ J2, for some m ≥ 2. ’

Note that I is admissible if and only if N is finite.

In general, if Λ′mon = Λ with Λ′ = KQ/I ′, I ′ need not be admissible.

Proposition

Vad , the algebras in V defined by admissible ideals is an algebraic
subvariety.
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Quasi-hereditary algebras (G-Schroll)

Quasi-hereditary algebras were introduce by L. Scott (1988) to
study highest weight categories. Further important early work was
done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let Λ = KQ/I with JN ⊆ I ⊆ J2 for some N ≥ 2.
Let L be a two-sided ideal in Λ. We say L is a heredity ideal in Λ if
1. L = ΛeΛ for some idempotent e in Λ,
2. eΛe is a semisimple ring
3. ΛeΛ is a left projective Λ-module.

We say Λ is a quasi-hereditary algebra if there exist a chain of
two-sided ideals 0 = L0 ⊂ L1 ⊂ · · · ⊂ Lm = Λ such that Li/Li−1 is
a heredity ideal in Λ/Li−1, for i = 1, . . . ,m.

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lm = Λ is called a heredity chain.
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The monomial case: If p = v1 → v2 → · · · → vn is a path in Q,
then we say v2, v3, . . . , vn−1 are internal to p.

If v 6= v2, . . . , vn−1 we say v is not internal to p.

Proposition

Let Λ = KQ/I be a finite dimensional K -algebra with I a
monomial ideal with minimal set ρ of generators of paths. Let v be
a vertex of Q. Then ΛvΛ is a heredity ideal if and only for all
p ∈ ρ, v is not internal to p.

This provides an algorithm to determine whether or not a finite
dimensional monomial algebra is quasi-hereditary.

General case

Theorem
Let Λ = KQ/I with JN ⊆ I ⊆ J2. If ΛMon is quasi-hereditary, then
so is Λ.
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A combinatorics problem

Let Λ be a quasi-hereditary algebra and C is the length of shortest
heredity chain.

Then gl. dim(Λ) ≤ 2C − 2 (Dlab-Ringel)

Problem: Let Q be a (finite) quiver.

Find an algorithm to construct a minimal length heredity chain in
KQ. Find a bound, upper or lower, on C in terms of Q.

Note that if e = v1 + · · ·+ vn then eJe = 0 iff for i , j there is no
path from vi to vj .

This is necessary and sufficient for KQeKQ to be a heredity ideal
in KQ.
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