Algebras and varieties

Edward L. Green Virginia Tech

Algebra Extravaganza, July, 2017, Temple University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

K a field. \mathcal{Q} a finite quiver $K\mathcal{Q}$ the path algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

K a field. Q a finite quiver KQ the path algebra.

KQ has K-basis, B, the set of finite paths in Q. Multiplication of paths is concatenation or 0.

K a field. Q a finite quiver KQ the path algebra.

KQ has K-basis, B, the set of finite paths in Q. Multiplication of paths is concatenation or 0.

The free associative algebra on n variables is isomorphic to the path algebra whose quiver is n loops at a vertex.

K a field. Q a finite quiver KQ the path algebra.

KQ has K-basis, B, the set of finite paths in Q. Multiplication of paths is concatenation or 0.

The free associative algebra on n variables is isomorphic to the path algebra whose quiver is n loops at a vertex.

Every finite dimensional *K*-algebra, *K* algebraically closed, is Morita equivalent to some KQ/I with $J^N \subseteq I \subseteq J^2$, where $J = \langle \operatorname{arrows} \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of monomial algebras:

Properties of monomial algebras:

1. There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
 Cartan determinant conjecture holds (Wilson, 1983)

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
 Cartan determinant conjecture holds (Wilson, 1983)

4. Know syzygies (Huisgen-Zimmermann, 1991)

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
 Cartan determinant conjecture holds (Wilson, 1983)
 Know syzygies (Huisgen-Zimmermann, 1991)
 Complete description of Koszul, D-Koszul monomial algebras

(G.-Huang, 1995, G. - Marcos -Martínez-Villa - Zhang, 2004)

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
 Cartan determinant conjecture holds (Wilson, 1983)
 Know syzygies (Huisgen-Zimmermann, 1991)
 Complete description of Koszul, *D*-Koszul monomial algebras (G.-Huang, 1995, G. - Marcos -Martínez-Villa - Zhang, 2004)
 Complete description of the Ext-algebra Ext^{*}_Λ(Λ/J, Λ/J) (G.-Zacharia, 1994)

Properties of monomial algebras:

1. There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985) 2. The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990) 3. Cartan determinant conjecture holds (Wilson, 1983) 4. Know syzygies (Huisgen-Zimmermann, 1991) 5. Complete description of Koszul, D-Koszul monomial algebras (G.-Huang, 1995, G. - Marcos -Martínez-Villa - Zhang, 2004) 6. Complete description of the Ext-algebra $Ext_{\Lambda}^{*}(\Lambda/J, \Lambda/J)$ (G.-Zacharia, 1994)

7. I has a unique minimal generating set of paths

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
 Cartan determinant conjecture holds (Wilson, 1983)
 Know syzygies (Huisgen-Zimmermann, 1991)
 Complete description of Koszul, *D*-Koszul monomial algebras (G.-Huang, 1995, G. - Marcos -Martínez-Villa - Zhang, 2004)

6. Complete description of the Ext-algebra $\operatorname{Ext}^*_{\Lambda}(\Lambda/J, \Lambda/J)$

(G.-Zacharia, 1994)

- 7. I has a unique minimal generating set of paths
- 8. The unique minimal generating set is the reduced Gröbner basis (G. 1997)

Properties of monomial algebras:

 There is an algorithm to construct minimal projective resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
 The finitistic dimension conjecture is true for monomial

algebras. (G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)

- 3. Cartan determinant conjecture holds (Wilson, 1983)
- 4. Know syzygies (Huisgen-Zimmermann, 1991)
- 5. Complete description of Koszul, D-Koszul monomial algebras
- (G.-Huang, 1995, G. Marcos -Martínez-Villa Zhang, 2004)
- 6. Complete description of the Ext-algebra $\operatorname{Ext}^*_{\Lambda}(\Lambda/J, \Lambda/J)$

(G.-Zacharia, 1994)

7. I has a unique minimal generating set of paths

- 8. The unique minimal generating set is the reduced Gröbner basis (G. 1997)
- 9. There is a simple algorithm to determine if a monomial algebra is quasi-hereditary.(G.-Schroll, 2017)

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one correspondence with the set of algebras.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra $A = KQ/\langle T \rangle$, consider the set of algebras $\Lambda = KQ/I$ such that the associated monomial algebra is A.

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra $A = KQ/\langle T \rangle$, consider the set of algebras $\Lambda = KQ/I$ such that the associated monomial algebra is A. Whoa!!!

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra $A = KQ/\langle T \rangle$, consider the set of algebras $\Lambda = KQ/I$ such that the associated monomial algebra is A. Whoa!!!

I will define the associated monomial algebra soon.

(I). Given a monomial algebra, find a set of algebras that have properties 'controlled' by the monomial algebra.

(II). Find an affine algebraic variety whose points are in one-to-one correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra $A = KQ/\langle T \rangle$, consider the set of algebras $\Lambda = KQ/I$ such that the associated monomial algebra is A. Whoa!!!

I will define the associated monomial algebra soon.

Open questions: (1) (Auslander) Find a categorical description of a monomial algebra.

(2) Given KQ/I, find a criterion to determine if KQ/I is isomorphic to a monomial algebra.

We recall some well-known definitions.

Let P_1, \ldots, P_m be the indecomposable projective modules $v\Lambda$. Cartan matrix C_{Λ} of Λ :

 $C_{\Lambda} = (c_{i,j})$

where $c_{i,j} = \dim_{\mathcal{K}} \operatorname{Hom} (P_i, P_j)$ (Λ finite dimensional)

We recall some well-known definitions.

Let P_1, \ldots, P_m be the indecomposable projective modules $v\Lambda$. Cartan matrix C_{Λ} of Λ :

 $C_{\Lambda} = (c_{i,j})$

where $c_{i,j} = \dim_{\mathcal{K}} \text{Hom} (P_i, P_j)$ (Λ finite dimensional)

global dimension of Λ : **gldim**(Λ) = sup { $pd(M)|M \in \Lambda - mod$ } where pd(M) is the projective dimension of M.

We recall some well-known definitions.

Let P_1, \ldots, P_m be the indecomposable projective modules $v\Lambda$. Cartan matrix C_{Λ} of Λ :

 $C_{\Lambda} = (c_{i,j})$

where $c_{i,j} = \dim_{\mathcal{K}} \text{Hom} (P_i, P_j)$ (Λ finite dimensional)

global dimension of Λ : **gldim**(Λ) = sup { $pd(M)|M \in \Lambda - mod$ } where pd(M) is the projective dimension of M.

Theorem (Eilenberg)

A a finite dimensional with $gldim(A) < \infty \Rightarrow det(C_A) = \pm 1$.

Conjecture (Cartan determinant conjecture) A a finite dimensional with $gldim(A) < \infty \Rightarrow det(C_A) = +1$.

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

- 1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$
- 2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

3. The Betti numbers of the "order resolutions" of 1 dimensional simple modules are the same.

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

3. The Betti numbers of the "order resolutions" of 1 dimensional simple modules are the same.

4. If dim_K(A_{Mon}) < ∞ , then $C_A = C_{A_{Mon}}$ and hence the Cartan determinant holds for A if gl. dim(A_{Mon}) < ∞ .

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

3. The Betti numbers of the "order resolutions" of 1 dimensional simple modules are the same.

4. If dim_K(A_{Mon}) < ∞ , then $C_A = C_{A_{Mon}}$ and hence the Cartan determinant holds for A if gl. dim(A_{Mon}) < ∞ .

5. A and A_{Mon} have the "same" K-basis of paths.

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

3. The Betti numbers of the "order resolutions" of 1 dimensional simple modules are the same.

4. If dim_K(A_{Mon}) < ∞ , then $C_A = C_{A_{Mon}}$ and hence the Cartan determinant holds for A if gl. dim(A_{Mon}) < ∞ .

5. A and A_{Mon} have the "same" K-basis of paths.

6. If T is a set of paths of length 2, then A and A_{Mon} are Koszul algebras. [G.-Huang]

1. $\dim_{\mathcal{K}}(A) = \dim_{\mathcal{K}}(A_{Mon})$

2. A finite dimensional, then $gldim(A) \leq gldim(A_{Mon})$.

3. The Betti numbers of the "order resolutions" of 1 dimensional simple modules are the same.

4. If dim_K(A_{Mon}) < ∞ , then $C_A = C_{A_{Mon}}$ and hence the Cartan determinant holds for A if gl. dim(A_{Mon}) < ∞ .

5. A and A_{Mon} have the "same" K-basis of paths.

6. If T is a set of paths of length 2, then A and A_{Mon} are Koszul algebras. [G.-Huang]

7. If A_{Mon} is quasi-hereditary, then so is A. (G.-Schroll)

The variety

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not| q$. (\mathcal{T} is called tip-reduced)

The variety

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not|q$. (\mathcal{T} is called tip-reduced) Set $A = KQ/\langle \mathcal{T} \rangle$.

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not|q$. (\mathcal{T} is called tip-reduced) Set $A = KQ/\langle \mathcal{T} \rangle$.

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety $\mathcal{V}(\mathcal{T})$ whose points are in one-to-one correspondence with the algebras Λ such that A is the associated monomial algebra of Λ . The monomial algebra A corresponds to the point $(\mathbf{0}) = (0, 0, \dots, 0) \in \mathcal{V}(\mathcal{T})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not|q$. (\mathcal{T} is called tip-reduced) Set $A = KQ/\langle \mathcal{T} \rangle$.

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety $\mathcal{V}(\mathcal{T})$ whose points are in one-to-one correspondence with the algebras Λ such that A is the associated monomial algebra of Λ . The monomial algebra A corresponds to the point $(\mathbf{0}) = (0, 0, \dots, 0) \in \mathcal{V}(\mathcal{T})$.

We freely view this correspondence as an identification.

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not|q$. (\mathcal{T} is called tip-reduced) Set $A = KQ/\langle \mathcal{T} \rangle$.

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety $\mathcal{V}(\mathcal{T})$ whose points are in one-to-one correspondence with the algebras Λ such that A is the associated monomial algebra of Λ . The monomial algebra A corresponds to the point $(\mathbf{0}) = (0, 0, \dots, 0) \in \mathcal{V}(\mathcal{T})$.

We freely view this correspondence as an identification.

Note that every algebra of the form KQ/I corresponds to a point in some V(T).

Let \mathcal{T} be a set of paths in \mathcal{B} such that if $p, q \in \mathcal{T}$ and $p \neq q$, then $p \not|q$. (\mathcal{T} is called tip-reduced) Set $A = KQ/\langle \mathcal{T} \rangle$.

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety $\mathcal{V}(\mathcal{T})$ whose points are in one-to-one correspondence with the algebras Λ such that A is the associated monomial algebra of Λ . The monomial algebra A corresponds to the point $(\mathbf{0}) = (0, 0, \dots, 0) \in \mathcal{V}(\mathcal{T})$.

We freely view this correspondence as an identification.

Note that every algebra of the form KQ/I corresponds to a point in some V(T).

It's time to define the associated monomial algebra.

A brief journey into the world of Gröbner bases

Let \succ be a well-order on $\mathcal B$ that preserves multiplication.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A brief journey into the world of Gröbner bases

Let \succ be a well-order on \mathcal{B} that preserves multiplication.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
That is, for p, q, r, s \in \mathcal{B},

1. if p \succ q then pr \succ qr, if both \neq 0.

2. if p \succ q then sp \succ sq, if both \neq 0.

3. if p = qrs, then p \succeq r.
```

A brief journey into the world of Gröbner bases

Let \succ be a well-order on \mathcal{B} that preserves multiplication.

That is, for
$$p, q, r, s \in \mathcal{B}$$
,
1. if $p \succ q$ then $pr \succ qr$, if both $\neq 0$.
2. if $p \succ q$ then $sp \succ sq$, if both $\neq 0$.
3. if $p = qrs$, then $p \succeq r$.

If
$$x = \sum_{p \in \mathcal{B}} \alpha_p p \in KQ$$
, then
 $\mathsf{Tip}(x) = \mathsf{largest } p \mathsf{ ocurring in } x.$

If $X \subseteq KQ$, then

 $\mathsf{Tip}(X) = \{\mathsf{Tip}(x) \mid x \in X\}$ $\mathsf{Nontip}(X) = \mathcal{B} \setminus \mathsf{Tip}(X).$

Gröbner bases

Let *I* be an ideal in KQ. A set of elements G in *I* is a Gröbner basis for *I* with respect to \succ if

 $\langle \mathsf{Tip}(\mathcal{G}) \rangle = \langle \mathsf{Tip}(I) \rangle.$

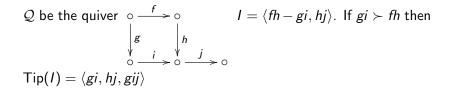
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

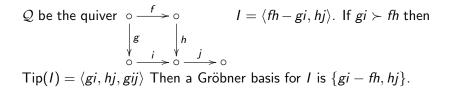
Gröbner bases

Let *I* be an ideal in KQ. A set of elements G in *I* is a Gröbner basis for *I* with respect to \succ if

 $\langle \mathsf{Tip}(\mathcal{G}) \rangle = \langle \mathsf{Tip}(I) \rangle.$

 $\langle \text{Tip}(I) \rangle$ is called the associated monomial ideal of I and $KQ/\langle \text{Tip}(I) \rangle$ is the associated monomial algebra of KQ/I. We sometimes write I_{Mon} for $\langle \text{Tip}(I) \rangle$ and $(KQ/I)_{Mon}$ for $KQ/\langle \text{Tip}(I) \rangle = KQ/I_{Mon}$.





 $\mathcal{Q} \text{ be the quiver } \circ \xrightarrow{f} \circ \qquad I = \langle fh - gi, hj \rangle. \text{ If } gi \succ fh \text{ then}$ $\downarrow^{g} \qquad \downarrow h$ $\circ \xrightarrow{i} \circ \circ \xrightarrow{j} \circ$ $\text{Tip}(I) = \langle gi, hj, gij \rangle \text{ Then a Gröbner basis for } I \text{ is } \{gi - fh, hj\}.$

If $fh \succ gi$ then Tip $(I) = \{fh, hj, gij\}$ and the Gröbner basis for I is $\{gi - fh, hj, gij\}$

1. If \mathcal{G} is a Gröbner basis for I, then \mathcal{G} generates I.

1. If \mathcal{G} is a Gröbner basis for I, then \mathcal{G} generates I. 2. $I_{Mon} = \langle \operatorname{Tip}(I) \rangle$, being a monomial ideal, has a unique smallest set of generators that are paths.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. If \mathcal{G} is a Gröbner basis for I, then \mathcal{G} generates I. 2. $I_{Mon} = \langle \operatorname{Tip}(I) \rangle$, being a monomial ideal, has a unique smallest set of generators that are paths. This set is tip-reduced.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If G is a Gröbner basis for I, then G generates I.
 I_{Mon} = (Tip(I)), being a monomial ideal, has a unique smallest set of generators that are paths. This set is tip-reduced.

3. The Fundamental Lemma If I is an ideal in KQ, then

 $\mathcal{KQ} \simeq I \oplus \operatorname{Span}_{\mathcal{K}}(\operatorname{Nontip}(I)),$

as *K*-vector spaces.

1. If \mathcal{G} is a Gröbner basis for I, then \mathcal{G} generates I. 2. $I_{Mon} = \langle \operatorname{Tip}(I) \rangle$, being a monomial ideal, has a unique smallest set of generators that are paths. This set is tip-reduced.

3. The Fundamental Lemma If I is an ideal in KQ, then

 $\mathcal{KQ} \simeq I \oplus \operatorname{Span}_{\mathcal{K}}(\operatorname{Nontip}(I)),$

(日) (同) (三) (三) (三) (○) (○)

as *K*-vector spaces.

Thus, we may identify KQ/I with $\text{Span}_{K}(\text{Nontip}(I))$.

1. If \mathcal{G} is a Gröbner basis for I, then \mathcal{G} generates I. 2. $I_{Mon} = \langle \operatorname{Tip}(I) \rangle$, being a monomial ideal, has a unique smallest set of generators that are paths. This set is tip-reduced.

3. The Fundamental Lemma If I is an ideal in KQ, then

 $KQ \simeq I \oplus \operatorname{Span}_{K}(\operatorname{Nontip}(I)),$

as K-vector spaces.

Thus, we may identify KQ/I with $\text{Span}_{K}(\text{Nontip}(I))$.

There is a special Gröbner basis for an ideal that is unique.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

For each $t \in \mathcal{T}$, by the Fundamental Lemma, there exist unique $g_t \in I$ and $n_t \in \text{Span}_{\mathcal{K}}(\mathcal{N})$, such that

$$t = g_t + n_t$$
, or $g_t = t - n_t$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

For each $t \in \mathcal{T}$, by the Fundamental Lemma, there exist unique $g_t \in I$ and $n_t \in \text{Span}_{\mathcal{K}}(\mathcal{N})$, such that

$$t = g_t + n_t$$
, or $g_t = t - n_t$

Setting $\mathcal{G} = \{g_t \mid t \in \mathcal{T}\}$, we have:

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

For each $t \in \mathcal{T}$, by the Fundamental Lemma, there exist unique $g_t \in I$ and $n_t \in \text{Span}_{\mathcal{K}}(\mathcal{N})$, such that

$$t = g_t + n_t$$
, or $g_t = t - n_t$

Setting $\mathcal{G} = \{g_t \mid t \in \mathcal{T}\}$, we have: 1. Tip $(\mathcal{G}) = \mathcal{T}$ and $\mathcal{G} \subset I$.

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

For each $t \in \mathcal{T}$, by the Fundamental Lemma, there exist unique $g_t \in I$ and $n_t \in \text{Span}_{\mathcal{K}}(\mathcal{N})$, such that

$$t = g_t + n_t$$
, or $g_t = t - n_t$

Setting $\mathcal{G} = \{g_t \mid t \in \mathcal{T}\}\)$, we have: 1. $\operatorname{Tip}(\mathcal{G}) = \mathcal{T}$ and $\mathcal{G} \subset I$. 2. \mathcal{G} is a Gröbner basis for I $\langle \operatorname{Tip}(\mathcal{G}) \rangle = \langle \operatorname{Tip}(\mathcal{T}) \rangle = \langle \operatorname{Tip}(I) \rangle = I_{Mon}$

Given an ideal $I \subseteq KQ$, I_{Mon} is a monomial ideal, and hence has a unique (tip-reduced) minimal generating set \mathcal{T} of paths. Let $\mathcal{N} = \text{Nontip}(\text{Tip}\langle \mathcal{T} \rangle)$

For each $t \in \mathcal{T}$, by the Fundamental Lemma, there exist unique $g_t \in I$ and $n_t \in \text{Span}_{\mathcal{K}}(\mathcal{N})$, such that

$$t = g_t + n_t$$
, or $g_t = t - n_t$

Setting $\mathcal{G} = \{g_t \mid t \in \mathcal{T}\}$, we have: 1. Tip $(\mathcal{G}) = \mathcal{T}$ and $\mathcal{G} \subset I$. 2. \mathcal{G} is a Gröbner basis for I $\langle \operatorname{Tip}(\mathcal{G}) \rangle = \langle \operatorname{Tip}(\mathcal{T}) \rangle = \langle \operatorname{Tip}(I) \rangle = I_{Mon}$

 ${\mathcal G}$ is called the reduced Gröbner basis of I with respect to \succ and is unique.

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras $K\mathcal{Q}/I$ having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras $K\mathcal{Q}/I$ having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

A brief outline of why $\mathcal{V}(\mathcal{T})$ is a variety.

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras $K\mathcal{Q}/I$ having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

A brief outline of why $\mathcal{V}(\mathcal{T})$ is a variety.

Given \mathcal{T} , set $\mathcal{N} = \mathcal{B} \setminus \text{Tip}(\langle \mathcal{T} \rangle) = \text{Nontip}(\langle \mathcal{T} \rangle)$.

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras \mathcal{KQ}/I having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

A brief outline of why $\mathcal{V}(\mathcal{T})$ is a variety.

Given \mathcal{T} , set $\mathcal{N} = \mathcal{B} \setminus \text{Tip}(\langle \mathcal{T} \rangle) = \text{Nontip}(\langle \mathcal{T} \rangle)$.

For each $t \in \mathcal{T}$, set

$$\mathcal{N}_t = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n\}$$

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras \mathcal{KQ}/I having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

A brief outline of why $\mathcal{V}(\mathcal{T})$ is a variety.

Given \mathcal{T} , set $\mathcal{N} = \mathcal{B} \setminus \text{Tip}(\langle \mathcal{T} \rangle) = \text{Nontip}(\langle \mathcal{T} \rangle)$.

For each $t \in \mathcal{T}$, set

$$\mathcal{N}_t = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n\}$$

Let

$$D = \sum_{t \in \mathcal{T}} |\mathcal{N}_t| \text{ and } \mathcal{A} = \mathcal{K}^D$$

Thus, $\mathcal{V}(\mathcal{T})$ corresponds to the algebras \mathcal{KQ}/I having reduced Gröbner bases \mathcal{G} with $\text{Tip}(\mathcal{G}) = \mathcal{T}$.

A brief outline of why $\mathcal{V}(\mathcal{T})$ is a variety.

Given \mathcal{T} , set $\mathcal{N} = \mathcal{B} \setminus \text{Tip}(\langle \mathcal{T} \rangle) = \text{Nontip}(\langle \mathcal{T} \rangle)$.

For each $t \in \mathcal{T}$, set

$$\mathcal{N}_t = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n\}$$

Let

$$D = \sum_{t \in \mathcal{T}} |\mathcal{N}_t|$$
 and $\mathcal{A} = \mathcal{K}^D$

Write elements of A as tuples $(\mathbf{c}) = (c_{t,n})$ where $t \in \mathcal{T}$, $n \in \mathcal{N}_t$, all but a finite number of entries are nonzero.

Given $(\mathbf{c}) = (c_{t,n}) \in \mathcal{A}$, let H be the ideal generated by

$$\mathcal{H} = \{t - \sum_{n \in \mathcal{N}_t} c_{t,n} n \mid t \in \mathcal{T}\}$$

Given $(\mathbf{c}) = (c_{t,n}) \in \mathcal{A}$, let H be the ideal generated by

$$\mathcal{H} = \{t - \sum_{n \in \mathcal{N}_t} c_{t,n}n \mid t \in \mathcal{T}\}$$

For (c) to be in $\mathcal{V}(\mathcal{T})$, \mathcal{H} must be the reduced Gröbner basis of H.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

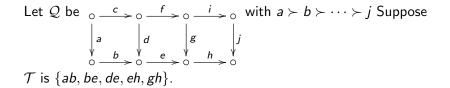
Given $(\mathbf{c}) = (c_{t,n}) \in \mathcal{A}$, let H be the ideal generated by

$$\mathcal{H} = \{t - \sum_{n \in \mathcal{N}_t} c_{t,n}n \mid t \in \mathcal{T}\}$$

For (c) to be in $\mathcal{V}(\mathcal{T})$, \mathcal{H} must be the reduced Gröbner basis of H.

Theorem (Bergman, G, Mora)

Keeping the above notation, \mathcal{H} is the reduced Gröbner basis of H if and only if all overlap relations completely reduce to 0.



イロト 不得下 イヨト イヨト

Let Q be $\circ \stackrel{c}{\longrightarrow} \circ \stackrel{f}{\longrightarrow} \circ \stackrel{i}{\longrightarrow} \circ \circ$ with $a \succ b \succ \cdots \succ j$ Suppose $\downarrow a \qquad \downarrow d \qquad \downarrow g \qquad \downarrow j$ $\circ \stackrel{b}{\longrightarrow} \circ \stackrel{e}{\longrightarrow} \circ \stackrel{h}{\longrightarrow} \circ \stackrel{h}{\longrightarrow} \circ$ \mathcal{T} is $\{ab, be, de, eh, gh\}$. Then $\mathcal{H} = \{ab - Xcd, be, de - Yfg, eh, gh - Zij\}$.

イロト 不得 トイヨト イヨト 三日

Let Q be $\circ \xrightarrow{c} \circ \xrightarrow{f} \circ \xrightarrow{i} \circ \circ$ with $a \succ b \succ \cdots \succ j$ Suppose $\begin{vmatrix} a & | d & | g & | j \\ \circ \xrightarrow{b} \circ \xrightarrow{e} \circ \xrightarrow{h} \circ \circ \xrightarrow{h} \circ \circ$ \mathcal{T} is $\{ab, be, de, eh, gh\}$. Then $\mathcal{H} = \{ab - Xcd, be, de - Yfg, eh, gh - Zij\}$. Overlaps: ab and be, de and eh

イロト 不得 トイヨト イヨト 三日

The first overlap relation is -Xcde which reduces to -XYcfg; yeilding XY = 0.

The first overlap relation is -Xcde which reduces to -XYcfg; yeilding XY = 0. The second overlap relation is -Yfgh which reduces to -YZfij; yeilding YZ = 0.

Let Q be $\circ \xrightarrow{c} \circ \xrightarrow{f} \circ \xrightarrow{i} \circ \circ$ with $a \succ b \succ \cdots \succ j$ Suppose $\begin{vmatrix} a & & \\ b & & \\ 0 & \xrightarrow{b} \circ & \xrightarrow{e} \circ & \xrightarrow{h} \circ & \xrightarrow{h} \circ & \xrightarrow{h} &$

The first overlap relation is -Xcde which reduces to -XYcfg; yeilding XY = 0. The second overlap relation is -Yfgh which reduces to -YZfij; yeilding YZ = 0.

Thus $\mathcal{V}(\mathcal{T})$ is the zero set of the ideal (XY, YZ) in $\mathcal{K}[X, Y, Z]$.

There is a graded version of the variety of algebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There is a graded version of the variety of algebras.

Let Γ be a group and $W \colon \mathcal{Q}_1 \to \Gamma$. We call W a weight function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There is a graded version of the variety of algebras.

Let Γ be a group and $W \colon \mathcal{Q}_1 \to \Gamma$. We call W a weight function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

W extends to \mathcal{B} by $W(a_1a_2\cdots a_n) = W(a_1)\cdots W(a_n)$ and $W(v) = 1_{\Gamma}$.

There is a graded version of the variety of algebras.

Let Γ be a group and $W \colon \mathcal{Q}_1 \to \Gamma$. We call W a weight function.

W extends to \mathcal{B} by $W(a_1a_2\cdots a_n) = W(a_1)\cdots W(a_n)$ and $W(v) = 1_{\Gamma}$.

KQ is Γ-graded by $KQ = \bigoplus_{\gamma \in \Gamma} (KQ)_{\gamma}$ where $(KQ)_{\gamma}$ is the *K*-span of the paths of weight γ .

There is a graded version of the variety of algebras.

Let Γ be a group and $W \colon \mathcal{Q}_1 \to \Gamma$. We call W a weight function.

W extends to \mathcal{B} by $W(a_1a_2\cdots a_n) = W(a_1)\cdots W(a_n)$ and $W(v) = 1_{\Gamma}$.

KQ is Γ -graded by $KQ = \bigoplus_{\gamma \in \Gamma} (KQ)_{\gamma}$ where $(KQ)_{\gamma}$ is the *K*-span of the paths of weight γ .

If $\Lambda = KQ/I$ has an induced Γ -grading if and only if I can be generated by weight homogeneous elements.

There is a graded version of the variety of algebras.

Let Γ be a group and $W \colon Q_1 \to \Gamma$. We call W a weight function.

W extends to \mathcal{B} by $W(a_1a_2\cdots a_n) = W(a_1)\cdots W(a_n)$ and $W(v) = 1_{\Gamma}$.

KQ is Γ -graded by $KQ = \bigoplus_{\gamma \in \Gamma} (KQ)_{\gamma}$ where $(KQ)_{\gamma}$ is the *K*-span of the paths of weight γ .

If $\Lambda = KQ/I$ has an induced Γ -grading if and only if I can be generated by weight homogeneous elements.

Fact: If *I* can generated by weight homogeneous elements, then the reduced Gröbner basis is composed of weight homogeneous elements.

Note that if T is a set of paths, then $KQ/\langle T \rangle$ has an induced weight grading (for any weight function).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Note that if \mathcal{T} is a set of paths, then $KQ/\langle \mathcal{T} \rangle$ has an induced weight grading (for any weight function).

Given $t \in \mathcal{T}$, change the definition of \mathcal{N}_t to

$$\mathcal{N}_t^W = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n, W(n) = W(t)\}.$$

and $\mathcal{A} = \mathcal{K}^{D}$ where $D = \sum_{t \in \mathcal{T}} |\mathcal{N}_{t}^{W}|$.

Note that if \mathcal{T} is a set of paths, then $KQ/\langle \mathcal{T} \rangle$ has an induced weight grading (for any weight function).

Given $t \in \mathcal{T}$, change the definition of \mathcal{N}_t to

$$\mathcal{N}_t^W = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n, W(n) = W(t)\}.$$

and $\mathcal{A} = \mathcal{K}^{D}$ where $D = \sum_{t \in \mathcal{T}} |\mathcal{N}_{t}^{W}|$.

Again let $\mathcal{H}^W = \{h_t \mid h_t = t - \sum_{n \in \mathcal{N}_t^W} c_{t,n}n\}$. Note that each h_t is weight homogeneous and $\text{Tip}(\mathcal{H}^W) = \mathcal{T}$.

Note that if \mathcal{T} is a set of paths, then $KQ/\langle \mathcal{T} \rangle$ has an induced weight grading (for any weight function).

Given $t \in \mathcal{T}$, change the definition of \mathcal{N}_t to

$$\mathcal{N}_t^W = \{n \in \mathcal{N} \mid n || t, \ell(n) \ge 1, t \succ n, W(n) = W(t)\}.$$

and $\mathcal{A} = \mathcal{K}^{D}$ where $D = \sum_{t \in \mathcal{T}} |\mathcal{N}_{t}^{W}|$.

Again let $\mathcal{H}^W = \{h_t \mid h_t = t - \sum_{n \in \mathcal{N}_t^W} c_{t,n}n\}$. Note that each h_t is weight homogeneous and $\text{Tip}(\mathcal{H}^W) = \mathcal{T}$.

(日) (同) (三) (三) (三) (○) (○)

Thus $\mathcal{KQ}/\langle \mathcal{H}^W \rangle$ has an induced weight grading.

Soooo,

<□ > < @ > < E > < E > E のQ @

Soooo,

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points $(\mathbf{c}) = (c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Soooo,

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points (c) = $(c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

Theorem

Let Γ be a group and $W : \mathcal{Q}_1 \to \Gamma$ be a weight function and $\mathcal{T} \subseteq \mathcal{B}$.

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points $(\mathbf{c}) = (c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

Theorem

Let Γ be a group and $W : \mathcal{Q}_1 \to \Gamma$ be a weight function and $\mathcal{T} \subseteq \mathcal{B}$.

1. There is a one-to-one correspondence between the points $(\mathbf{c}) = (c_{t,n}) \in \mathcal{V}^W(\mathcal{T})$ and weight induced graded algebras $\Lambda = K \mathcal{Q}/I$ with $I_{Mon} = \langle \mathcal{T} \rangle$.

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points $(\mathbf{c}) = (c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

Theorem

Let Γ be a group and $W : \mathcal{Q}_1 \to \Gamma$ be a weight function and $\mathcal{T} \subseteq \mathcal{B}$.

1. There is a one-to-one correspondence between the points $(\mathbf{c}) = (c_{t,n}) \in \mathcal{V}^W(\mathcal{T})$ and weight induced graded algebras $\Lambda = K\mathcal{Q}/I$ with $I_{Mon} = \langle \mathcal{T} \rangle$. 2. $\mathcal{V}^W(\mathcal{T})$ is an affine algebraic variety.

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points $(\mathbf{c}) = (c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

Theorem

Let Γ be a group and $W : \mathcal{Q}_1 \to \Gamma$ be a weight function and $\mathcal{T} \subseteq \mathcal{B}$.

1. There is a one-to-one correspondence between the points $(\mathbf{c}) = (c_{t,n}) \in \mathcal{V}^W(\mathcal{T})$ and weight induced graded algebras $\Lambda = K\mathcal{Q}/I$ with $I_{Mon} = \langle \mathcal{T} \rangle$. 2. $\mathcal{V}^W(\mathcal{T})$ is an affine algebraic variety.

Given a Γ -graded K-algebra $\Lambda = KQ/I$, where I generated by weight homogeneous elements for some weight function W,

Define $\mathcal{V}^{W}(\mathcal{T})$ be the points $(\mathbf{c}) = (c_{t,n})$ with $t \in \mathcal{T}$ and $n \in \mathcal{N}_{t}^{W}$ such that \mathcal{H}^{W} is the reduced Gröbner basis of the ideal it generates.

Theorem

Let Γ be a group and $W : \mathcal{Q}_1 \to \Gamma$ be a weight function and $\mathcal{T} \subseteq \mathcal{B}$.

1. There is a one-to-one correspondence between the points $(\mathbf{c}) = (c_{t,n}) \in \mathcal{V}^W(\mathcal{T})$ and weight induced graded algebras $\Lambda = K\mathcal{Q}/I$ with $I_{Mon} = \langle \mathcal{T} \rangle$. 2. $\mathcal{V}^W(\mathcal{T})$ is an affine algebraic variety.

Given a Γ -graded K-algebra $\Lambda = KQ/I$, where I generated by weight homogeneous elements for some weight function W, there is some set of paths \mathcal{T} such that Λ corresponds to a point in $\mathcal{V}^W(\mathcal{T})$.

Recall that $\Lambda = KQ/I$ is a Koszul algebra if the Ext-algebra Ext^{*}_{Λ}(Λ /**r**, Λ /**r**) is generated in degrees 0 and 1, where **r** = J/I.

Recall that $\Lambda = KQ/I$ is a Koszul algebra if the Ext-algebra Ext^{*}_{Λ}(Λ /**r**, Λ /**r**) is generated in degrees 0 and 1, where **r** = J/I.

If Λ is a Koszul algebra, then I can be generated by quadratic elements.

Recall that $\Lambda = KQ/I$ is a Koszul algebra if the Ext-algebra Ext^{*}_{Λ}(Λ /**r**, Λ /**r**) is generated in degrees 0 and 1, where **r** = J/I.

If Λ is a Koszul algebra, then I can be generated by quadratic elements.

Taking $W : \mathcal{Q}_1 \to \mathbb{Z}$ by W(a) = 1, then every Koszul algebra is positively \mathbb{Z} -graded.

Recall that $\Lambda = KQ/I$ is a Koszul algebra if the Ext-algebra Ext^{*}_{Λ}(Λ /**r**, Λ /**r**) is generated in degrees 0 and 1, where **r** = J/I.

If Λ is a Koszul algebra, then I can be generated by quadratic elements.

Taking $W : \mathcal{Q}_1 \to \mathbb{Z}$ by W(a) = 1, then every Koszul algebra is positively \mathbb{Z} -graded.

Theorem (G.-Huang)

If I is an ideal with a quadratic Gröbner basis, then KQ/I is a Koszul algebra.

Recall that $\Lambda = KQ/I$ is a Koszul algebra if the Ext-algebra Ext^{*}_{Λ}(Λ /**r**, Λ /**r**) is generated in degrees 0 and 1, where **r** = J/I.

If Λ is a Koszul algebra, then I can be generated by quadratic elements.

Taking $W : \mathcal{Q}_1 \to \mathbb{Z}$ by W(a) = 1, then every Koszul algebra is positively \mathbb{Z} -graded.

Theorem (G.-Huang)

If I is an ideal with a quadratic Gröbner basis, then KQ/I is a Koszul algebra.

We say $\Lambda = KQ/I$ is a strong Koszul algebra if it has a quadratic Gröbner basis.

Fixing $W \colon \mathcal{Q}_1 \to \mathbb{Z}$ to be $W \equiv 1$,

Fixing $W\colon \mathcal{Q}_1 \to \mathbb{Z}$ to be $W\equiv 1$,

and ${\mathcal T}$ to be a set of paths of length 2 then

Fixing $W \colon \mathcal{Q}_1 \to \mathbb{Z}$ to be $W \equiv 1$,

and ${\mathcal T}$ to be a set of paths of length 2 then

1. Every point in $\mathcal{V}^W(\mathcal{T})$ corresponds to a strong Koszul algebra

Fixing $W: \mathcal{Q}_1 \to \mathbb{Z}$ to be $W \equiv 1$,

and ${\mathcal T}$ to be a set of paths of length 2 then

1. Every point in $\mathcal{V}^{W}(\mathcal{T})$ corresponds to a strong Koszul algebra 2. The algebras in $\mathcal{V}^{W}(\mathcal{T})$ are all the same dimension and have the same basis

Fixing $W: \mathcal{Q}_1 \to \mathbb{Z}$ to be $W \equiv 1$,

and \mathcal{T} to be a set of paths of length 2 then

1. Every point in $\mathcal{V}^W(\mathcal{T})$ corresponds to a strong Koszul algebra 2. The algebras in $\mathcal{V}^W(\mathcal{T})$ are all the same dimension and have the same basis

3. *The order resolution for one dimensional simple modules for each algebran $\mathcal{V}^W(\mathcal{T})$ is graded minimal and they have the same Betti numbers.

Fixing $W: \mathcal{Q}_1 \to \mathbb{Z}$ to be $W \equiv 1$,

and \mathcal{T} to be a set of paths of length 2 then

1. Every point in $\mathcal{V}^W(\mathcal{T})$ corresponds to a strong Koszul algebra 2. The algebras in $\mathcal{V}^W(\mathcal{T})$ are all the same dimension and have the same basis

3. *The order resolution for one dimensional simple modules for each algebran $\mathcal{V}^W(\mathcal{T})$ is graded minimal and they have the same Betti numbers.

4. If each \mathcal{N}_t^W is finite, then the global dimension of each algebra is the same and there is a finite algorithm to determine gl. dim $(\mathcal{KQ}/\langle \mathcal{T} \rangle)$.

Varieties that contain commutative polynomial rings

 $R = K\{x_1, \ldots, x_n\}/\langle \{x_jx_i - x_ix_j \mid i < j\}\rangle$. Here Q is one vertex and n loops.

Varieties that contain commutative polynomial rings

 $R = K\{x_1, \ldots, x_n\}/\langle \{x_jx_i - x_ix_j \mid i < j\}\rangle$. Here Q is one vertex and n loops. Take $x_n \succ x_{n-1} \succ \cdots \succ x_1$. Then $\{x_jx_i - x_ix_j \mid j > i\}$ is a quadratic Gröbner basis.

Varieties that contain commutative polynomial rings

 $R = K\{x_1, \ldots, x_n\}/\langle \{x_jx_i - x_ix_j \mid i < j\}\rangle$. Here Q is one vertex and n loops. Take $x_n \succ x_{n-1} \succ \cdots \succ x_1$. Then $\{x_jx_i - x_ix_j \mid j > i\}$ is a quadratic Gröbner basis.

Thus R is a strong Koszul algebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K[x, y], $T = \{yx\}$.

Hence
$$\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \ldots a_n \in \mathbb{Z}_{\geq 0}\}.$$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K[x, y], $T = \{yx\}$.

With
$$y \succ x$$
, $\mathcal{N}_{yx}^W = \{xy, x^2\}$

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \ldots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K[x, y], $T = \{yx\}$.

With $y \succ x$, $\mathcal{N}_{yx}^W = \{xy, x^2\}$ Thus $\mathcal{V}^W(\mathcal{T}) = \mathcal{K}^2$ since there are no overlap relations.

$$g_{yx} = yx - Axy - Bx^2$$

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K[x, y], $T = \{yx\}$.

With $y \succ x$, $\mathcal{N}_{yx}^W = \{xy, x^2\}$ Thus $\mathcal{V}^W(\mathcal{T}) = \mathcal{K}^2$ since there are no overlap relations.

$$g_{yx} = yx - Axy - Bx^2$$

 $B = 0, A \neq 0, 1$: quantum affine planes;

Hence $\mathcal{N} = \{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \mid a_1, \dots a_n \in \mathbb{Z}_{\geq 0}\}.$

Every algebra $\Lambda = KQ/I$ in $\mathcal{V}^W(\mathcal{T})$ is strong Koszul, has basis \mathcal{N} , and $pd_{\Lambda}(K) = n$ with Betti numbers of the order resolution the same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K[x, y], $T = \{yx\}$.

With $y \succ x$, $\mathcal{N}_{yx}^W = \{xy, x^2\}$ Thus $\mathcal{V}^W(\mathcal{T}) = \mathcal{K}^2$ since there are no overlap relations.

$$g_{yx} = yx - Axy - Bx^2$$

 $B = 0, A \neq 0, 1$: quantum affine planes; A = 0 all isomorphic

Length lex ordering. R = K[x, y, z] with $z \succ y \succ x$

Length lex ordering. R = K[x, y, z] with $z \succ y \succ x$ Then $\mathcal{T} = \{zy, zx, yx\}$ and $\mathcal{N} = \{x^i y^j z^k \mid i, j, k \ge 0\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Length lex ordering.
$$R = K[x, y, z]$$
 with $z \succ y \succ x$
Then $\mathcal{T} = \{zy, zx, yx\}$ and $\mathcal{N} = \{x^i y^j z^k \mid i, j, k \ge 0\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$g_{zy} = zy - Ayz - By^{2} - Cxz - Dxy - Ex^{2}$$

$$g_{zx} = zx - Fyz - Gy^{2} - Hxz - Ixy - Jx^{2}$$

$$g_{yx} = yx - Lxz - Mxy - Px^{2}$$

Length lex ordering.
$$R = K[x, y, z]$$
 with $z \succ y \succ x$
Then $\mathcal{T} = \{zy, zx, yx\}$ and $\mathcal{N} = \{x^i y^j z^k \mid i, j, k \ge 0\}$

$$g_{zy} = zy - Ayz - By^{2} - Cxz - Dxy - Ex^{2}$$

$$g_{zx} = zx - Fyz - Gy^{2} - Hxz - Ixy - Jx^{2}$$

$$g_{yx} = yx - Lxz - Mxy - Px^{2}$$

Thus $\mathcal{V}(\mathcal{T})$ is a variety in \mathcal{K}^{13}

Length lex ordering. R = K[x, y, z] with $z \succ y \succ x$ Then $\mathcal{T} = \{zy, zx, yx\}$ and $\mathcal{N} = \{x^i y^j z^k \mid i, j, k \ge 0\}$

$$g_{zy} = zy - Ayz - By^{2} - Cxz - Dxy - Ex^{2}$$

$$g_{zx} = zx - Fyz - Gy^{2} - Hxz - Ixy - Jx^{2}$$

$$g_{yx} = yx - Lxz - Mxy - Px^{2}$$

Thus $\mathcal{V}(\mathcal{T})$ is a variety in \mathcal{K}^{13}

There is one overlap relation

$$g_{zy}x - zg_{yx}$$

Length lex ordering. R = K[x, y, z] with $z \succ y \succ x$ Then $\mathcal{T} = \{zy, zx, yx\}$ and $\mathcal{N} = \{x^i y^j z^k \mid i, j, k \ge 0\}$

$$g_{zy} = zy - Ayz - By^{2} - Cxz - Dxy - Ex^{2}$$

$$g_{zx} = zx - Fyz - Gy^{2} - Hxz - Ixy - Jx^{2}$$

$$g_{yx} = yx - Lxz - Mxy - Px^{2}$$

Thus $\mathcal{V}(\mathcal{T})$ is a variety in \mathcal{K}^{13}

There is one overlap relation

$$g_{zy}x - zg_{yx}$$

Obtain equations in 13 variables, some of which are degree 4.

<□ > < @ > < E > < E > E のQ @

1. Have a particular algebra in mind and study the variety(ies) it lies in.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

1. Have a particular algebra in mind and study the variety(ies) it lies in.

2. Have a particular monomial algebra and study the algebras in its variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

1. Have a particular algebra in mind and study the variety(ies) it lies in.

2. Have a particular monomial algebra and study the algebras in its variety.

Another useful tool, is specialization; i.e., fixing the values of some of the coefficients $c_{t,n}$ that occur. This is done by adding appropriate polynomials of the form

$$x_{t,n} - \alpha_{t,n}$$

to the ideal of the variety.

1. Have a particular algebra in mind and study the variety(ies) it lies in.

2. Have a particular monomial algebra and study the algebras in its variety.

Another useful tool, is specialization; i.e., fixing the values of some of the coefficients $c_{t,n}$ that occur. This is done by adding appropriate polynomials of the form

$$x_{t,n} - \alpha_{t,n}$$

to the ideal of the variety.

Again we get an affine algebraic subvariety of ${\cal V}$ (that need not contain $({\bf 0})).$

Given a set of tip-reduced paths \mathcal{T} , then $I = \langle \mathcal{T} \rangle$ is admissible if $J^m \subseteq I \subseteq J^2$, for some $m \ge 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given a set of tip-reduced paths \mathcal{T} , then $I = \langle \mathcal{T} \rangle$ is admissible if $J^m \subseteq I \subseteq J^2$, for some $m \ge 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Note that I is admissible if and only if \mathcal{N} is finite.

Given a set of tip-reduced paths \mathcal{T} , then $I = \langle \mathcal{T} \rangle$ is admissible if $J^m \subseteq I \subseteq J^2$, for some $m \ge 2$.

Note that I is admissible if and only if \mathcal{N} is finite.

In general, if $\Lambda'_{mon} = \Lambda$ with $\Lambda' = KQ/I'$, I' need not be admissible.

Given a set of tip-reduced paths \mathcal{T} , then $I = \langle \mathcal{T} \rangle$ is admissible if $J^m \subseteq I \subseteq J^2$, for some $m \ge 2$.

Note that I is admissible if and only if \mathcal{N} is finite.

In general, if $\Lambda'_{mon} = \Lambda$ with $\Lambda' = KQ/I'$, I' need not be admissible.

Proposition

 $\mathcal{V}^{ad},$ the algebras in $\mathcal V$ defined by admissible ideals is an algebraic subvariety.

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$.

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if 1. $L = \Lambda e \Lambda$ for some idempotent *e* in Λ ,

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if 1. $L = \Lambda e \Lambda$ for some idempotent *e* in Λ , 2. *e* Λe is a semisimple ring

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if 1. $L = \Lambda e \Lambda$ for some idempotent *e* in Λ , 2. $e \Lambda e$ is a semisimple ring 3. $\Lambda e \Lambda$ is a left projective Λ -module.

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if 1. $L = \Lambda e \Lambda$ for some idempotent *e* in Λ , 2. $e \Lambda e$ is a semisimple ring 3. $\Lambda e \Lambda$ is a left projective Λ -module.

We say Λ is a quasi-hereditary algebra if there exist a chain of two-sided ideals $0 = L_0 \subset L_1 \subset \cdots \subset L_m = \Lambda$ such that L_i/L_{i-1} is a heredity ideal in Λ/L_{i-1} , for $i = 1, \ldots, m$.

Quasi-hereditary algebras were introduce by L. Scott (1988) to study highest weight categories. Further important early work was done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$ for some $N \ge 2$. Let *L* be a two-sided ideal in Λ . We say *L* is a heredity ideal in Λ if 1. $L = \Lambda e \Lambda$ for some idempotent *e* in Λ , 2. $e \Lambda e$ is a semisimple ring 3. $\Lambda e \Lambda$ is a left projective Λ -module.

We say Λ is a quasi-hereditary algebra if there exist a chain of two-sided ideals $0 = L_0 \subset L_1 \subset \cdots \subset L_m = \Lambda$ such that L_i/L_{i-1} is a heredity ideal in Λ/L_{i-1} , for $i = 1, \ldots, m$.

 $0 = L_0 \subset L_1 \subset \cdots \subset L_m = \Lambda$ is called a heredity chain.

The monomial case: If $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$ is a path in Q, then we say $v_2, v_3, \ldots, v_{n-1}$ are internal to p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

Let $\Lambda = KQ/I$ be a finite dimensional K-algebra with I a monomial ideal with minimal set ρ of generators of paths. Let v be a vertex of Q. Then $\Lambda v\Lambda$ is a heredity ideal if and only for all $p \in \rho$, v is not internal to p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let $\Lambda = KQ/I$ be a finite dimensional K-algebra with I a monomial ideal with minimal set ρ of generators of paths. Let v be a vertex of Q. Then $\Lambda v\Lambda$ is a heredity ideal if and only for all $p \in \rho$, v is not internal to p.

This provides an algorithm to determine whether or not a finite dimensional monomial algebra is quasi-hereditary.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let $\Lambda = KQ/I$ be a finite dimensional K-algebra with I a monomial ideal with minimal set ρ of generators of paths. Let v be a vertex of Q. Then $\Lambda v\Lambda$ is a heredity ideal if and only for all $p \in \rho$, v is not internal to p.

This provides an algorithm to determine whether or not a finite dimensional monomial algebra is quasi-hereditary.

General case

Theorem

Let $\Lambda = KQ/I$ with $J^N \subseteq I \subseteq J^2$. If Λ_{Mon} is quasi-hereditary, then so is Λ .

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then gl. dim(Λ) $\leq 2C - 2$ (Dlab-Ringel)

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
Then gl. dim(\Lambda) \leq 2C - 2 (Dlab-Ringel)
```

Problem: Let Q be a (finite) quiver.

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

```
Then gl. dim(\Lambda) \leq 2C - 2 (Dlab-Ringel)
```

Problem: Let Q be a (finite) quiver.

Find an algorithm to construct a minimal length heredity chain in KQ. Find a bound, upper or lower, on C in terms of Q.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

```
Then gl. dim(\Lambda) \leq 2C - 2 (Dlab-Ringel)
```

Problem: Let Q be a (finite) quiver.

Find an algorithm to construct a minimal length heredity chain in KQ. Find a bound, upper or lower, on C in terms of Q.

Note that if $e = v_1 + \cdots + v_n$ then eJe = 0 iff for i, j there is no path from v_i to v_j .

Let Λ be a quasi-hereditary algebra and C is the length of shortest heredity chain.

```
Then gl. dim(\Lambda) \leq 2C - 2 (Dlab-Ringel)
```

Problem: Let Q be a (finite) quiver.

Find an algorithm to construct a minimal length heredity chain in KQ. Find a bound, upper or lower, on C in terms of Q.

Note that if $e = v_1 + \cdots + v_n$ then eJe = 0 iff for i, j there is no path from v_i to v_j .

This is necessary and sufficient for KQeKQ to be a heredity ideal in KQ.