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K a field.
Q a finite quiver
K Q the path algebra.

K Q has K-basis, B, the set of finite paths in Q.
Multiplication of paths is concatenation or 0.

The free associative algebra on n variables is isomorphic to the
path algebra whose quiver is n loops at a vertex.

Every finite dimensional K-algebra, K algebraically closed, is
Morita equivalent to some KQ// with JN C | C J?, where
J = (arrows)
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is called a monomial ideal.

Properties of monomial algebras:

1. There is an algorithm to construct minimal projective
resolutions of 1-dimensional modules. (G.-Happel-Zacharia, 1985)
2. The finitistic dimension conjecture is true for monomial
algebras. ( G.-Kirkman-Kuzmanovich 1991, Igusa-Zacharia, 1990)
3. Cartan determinant conjecture holds (Wilson, 1983)

4. Know syzygies (Huisgen-Zimmermann, 1991)

5. Complete description of Koszul, D-Koszul monomial algebras
(G.-Huang, 1995 , G. - Marcos -Martinez-Villa - Zhang, 2004 )

6. Complete description of the Ext-algebra Extj(A/J,A\/J)
(G.-Zacharia, 1994)

7. | has a unique minimal generating set of paths

8. The unique minimal generating set is the reduced Grobner basis
(G. 1997)

9. There is a simple algorithm to determine if a monomial algebra
is quasi-hereditary.(G.-Schroll, 2017)



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra
A= KQ/(T), consider the set of algebras A = KQ/I such that
the associated monomial algebra is A.



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra
A= KQ/(T), consider the set of algebras A = KQ/I such that
the associated monomial algebra is A.

Whoa!ll



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra
A= KQ/(T), consider the set of algebras A = KQ/I such that
the associated monomial algebra is A.

Whoa!ll

| will define the associated monomial algebra soon.



Main ideas

(). Given a monomial algebra, find a set of algebras that have
properties ‘controlled’ by the monomial algebra.

(). Find an affine algebraic variety whose points are in one-to-one
correspondence with the set of algebras.

We know such a set of algebras. Given a monomial algebra
A= KQ/(T), consider the set of algebras A = KQ/I such that
the associated monomial algebra is A.

Whoa!ll

| will define the associated monomial algebra soon.

Open questions: (1) (Auslander) Find a categorical description of
a monomial algebra.

(2) Given KQ/I, find a criterion to determine if KQ// is
isomorphic to a monomial algebra.
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We recall some well-known definitions.
Let P1,..., Py be the indecomposable projective modules vA.
Cartan matrix Cy of A:

Cn = (cij)
where ¢; j = dimgHom (P;, P;) (A finite dimensional)

global dimension of A : gldim(A) = sup { pd(M)|M € A—mod}
where pd(M) is the projective dimension of M.

Theorem (Eilenberg)
A a finite dimensional with gldim(A) < co = det(Ca) = £1.

Conjecture (Cartan determinant conjecture)
A a finite dimensional with gldim(A) < oo = det(Ca) = +1.
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A= KQ/I. Most of the properties described below can be found in
“On the homology of quotients of path algebras”, G.-Anick, 1987.

1. dimK(A) = dimK(AMon)

2. A finite dimensional, then gldim(A) < gldim(Apon)-

3. The Betti numbers of the “order resolutions” of 1 dimensional
simple modules are the same.

4. 1f dimk(Amon) < 00, then Ca = Cy,,,, and hence the Cartan
determinant holds for A if gl. dim(Apon) < 0.

5. A and Apon have the “same” K-basis of paths.

6. If T is a set of paths of length 2, then A and Apjon are Koszul
algebras. [G.-Huang]

7. If Apmon is quasi-hereditary, then so is A. ( G.-Schroll)
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The variety

Let 7 be a set of paths in 5 such that if p,g € T and p # q, then
p fq. (T is called tip-reduced)
Set A= KQ/(T).

Theorem (G.-Hille-Schroll)

There is an affine algebraic variety V(T ) whose points are in
one-to-one correspondence with the algebras N\ such that A is the
associated monomial algebra of N. The monomial algebra A
corresponds to the point (0) = (0,0,...,0) € V(T).

We freely view this correspondence as an identification.

Note that every algebra of the form KQ// corresponds to a point
in some V(T).

It's time to define the associated monomial algebra.
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A brief journey into the world of Grobner bases

Let > be a well-order on 5 that preserves multiplication.

That is, for p,q,r,s € B,
1. if p > g then pr > gr , if both # 0.
2. if p > g then sp > sq , if both # 0.
3. if p=grs, then p>=r.

If x = ZpGB app € KQ, then
Tip(x) = largest p ocurring in x.
If X C KQ, then
Tip(X) = {Tip(x) | x € X}

Nontip(X) = B\ Tip(X).
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Let / be an ideal in KQ. A set of elements G in [ is a Grobner
basis for | with respect to > if

(Tip(9)) = (Tip(/))-

(Tip(1)) is called the associated monomial ideal of I and
KQ/(Tip(l)) is the associated monomial algebra of KQ/I.
We sometimes write Iy, for (Tip(/)) and (KQ/I)mon for
KQ/(Tip(1)) = KQ/Inmon-
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Q be the quiver o — o I = (fh—gi, hj). If gi = fh then

b

O—>O0 —>20

Tip(!) = (gi, hj, gij) Then a Grébner basis for I is {gi — fh, hj}.

If fh >~ gi then Tip(/) = {fh, hj, gij} and the Grobner basis for / is
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Basic properties

1. If G is a Grobner basis for I, then G generates /.

2. Ipmon = (Tip(1)), being a monomial ideal, has a unique smallest
set of generators that are paths. This set is tip-reduced.

3. The Fundamental Lemma If / is an ideal in KQ, then

KQ ~ | & Spank(Nontip(/)),

as K-vector spaces.
Thus, we may identify KQ/I with Span,(Nontip(/)).

There is a special Grobner basis for an ideal that is unique.
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The reduced Grobner basis

Given an ideal | C KQ, Iyon is a monomial ideal, and hence has a
unique (tip-reduced) minimal generating set 7 of paths. Let
N = Nontip(Tip(T))

For each t € T, by the Fundamental Lemma, there exist unique
gt € | and n; € Spany(N), such that

t:gt—i-nt, or gt:t—nt

Setting G = {gt | t € T}, we have:
1. Tip(G)=T and G C .
2. G is a Grobner basis for /

(Tip(9)) = (Tip(T)) = (Tip(1)) = Imon

G is called the reduced Grobner basis of | with respect to > and is
unique.
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Thus, V(T) corresponds to the algebras KQ//I having reduced
Grobner bases G with Tip(G) =T .

A brief outline of why V(T is a variety.

Given T, set N =B\ Tip({T)) = Nontip((T)).

For each t € T, set
Ne={neN|n|tl(n)>1t=n}

Let

D=>|Nand A=KP
teT

Write elements of A as tuples (c) = (ct,n) where t € T, n € N,
all but a finite number of entries are nonzero.
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Given (c) = (ct,n) € A, let H be the ideal generated by
H={t— > can|teT}
neN:

For (c) to be in V(7), H must be the reduced Grébner basis of H.

Theorem (Bergman, G, Mora)

Keeping the above notation, H is the reduced Grébner basis of H
if and only if all overlap relations completely reduce to 0.
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Example

let Qbe ¢, o _f_o_ i _ o witha=b>--- =) Suppose
b e h
o o O O

T is {ab, be, de, eh, gh}.
Then H = {ab — Xcd, be, de — Yfg, eh, gh — Zij}.
Overlaps: ab and be, de and eh

The first overlap relation is —Xcde which reduces to —XYcfg;
yeilding XY = 0.

The second overlap relation is — Yfgh which reduces to — YZfij;
yeilding YZ = 0.

Thus V(T) is the zero set of the ideal (XY, YZ) in K[X, Y, Z].
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There is a graded version of the variety of algebras.
Let I be a group and W: Q1 — I'. We call W a weight function.

W extends to B by W(aiaz---an) = W(a1)--- W(ap) and
W(V) = ]_r.

KQ is I-graded by KQ = ®,cr(KQ), where (KQ), is the
K-span of the paths of weight ~.

If A= KQ/I has an induced l-grading if and only if / can be
generated by weight homogeneous elements.

Fact: If / can generated by weight homogeneous elements, then
the reduced Grobner basis is composed of weight homogeneous
elements.
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Given t € T, change the definition of N; to
NV ={neN|n|tl(n) >1,t=n W(n)=W(t)}.
and A = KP where D =3, - INVY|.

Again let HW = {h; | hy = t — >_nen Cennt. Note that each h
is weight homogeneous and Tip(HW) = T.

Thus KQ/(HW) has an induced weight grading.
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So000,

Define VW (T) be the points (c) = (ct,) with t € 7 and n € NW
such that HY is the reduced Grébner basis of the ideal it
generates.

Theorem

Let T be a group and W: Q1 — I be a weight function and
T CB.

1. There is a one-to-one correspondence between the points
(€) = (ct.n) € VW(T) and weight induced graded algebras
N=KQ/I with Iyen = (T).

2. VW(T) is an affine algebraic variety.

Given a -graded K-algebra A = KQ/I, where | generated by
weight homogeneous elements for some weight function W, there
is some set of paths 7 such that A corresponds to a point in

YW(T).
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Strong Koszul algebras;  (G. 2016)

Recall that A = KQ/I is a Koszul algebra if the Ext-algebra
Exta(A/r,\/r) is generated in degrees 0 and 1, where r = J/I.

If A'is a Koszul algebra, then /| can be generated by quadratic
elements.

Taking W: Q1 — Z by W(a) = 1, then every Koszul algebra is
positively Z-graded.

Theorem (G.-Huang)

If | is an ideal with a quadratic Grébner basis, then KQ/I is a
Koszul algebra.

We say A = KQ/I is a strong Koszul algebra if it has a quadratic
Grobner basis.



Fixing W: Q1 -+ Z tobe W =1,



Fixing W: Q1 -+ Z tobe W =1,

and 7 to be a set of paths of length 2 then



Fixing W: Q1 -+ Z tobe W =1,
and 7 to be a set of paths of length 2 then

1. Every point in YW(T) corresponds to a strong Koszul algebra



Fixing W: Q1 -+ Z tobe W =1,
and 7 to be a set of paths of length 2 then
1. Every point in YW(T) corresponds to a strong Koszul algebra

2. The algebras in VW(T) are all the same dimension and have
the same basis



Fixing W: Q1 -+ Z tobe W =1,
and 7 to be a set of paths of length 2 then

1. Every point in YW(T) corresponds to a strong Koszul algebra
2. The algebras in VW(T) are all the same dimension and have

the same basis

3. *The order resolution for one dimensional simple modules for

each algebran VW (T) is graded minimal and they have the same
Betti numbers.



Fixing W: Q1 -+ Z tobe W =1,
and 7 to be a set of paths of length 2 then

1. Every point in YW(T) corresponds to a strong Koszul algebra
2. The algebras in VW(T) are all the same dimension and have
the same basis

3. *The order resolution for one dimensional simple modules for
each algebran VW (T) is graded minimal and they have the same
Betti numbers.

4. If each /\/'tW is finite, then the global dimension of each algebra
is the same and there is a finite algorithm to determine

gl. dim(KQ/(T)).
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R = K{x1,...,xa}/{{xjxi — xixj | i <j}). Here Q is one vertex
and n loops.

Take X, = Xp—1 > -+ > x1. Then {x;x; — xix; | j > i} is a
quadratic Grobner basis.

Thus R is a strong Koszul algebra.
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We have R corresponds to a point in VW (T) where
T = {XJ'X,' |j > i}.

Hence N = {Xflxzaz - -Xg" ‘ a1,...dn € Zzo}.

Every algebra A = KQ/I in VW(T) is strong Koszul, has basis NV,
and pda(K) = n with Betti numbers of the order resolution the
same as the resolution of K over the polynomial ring.

n=2 Q has one vertex and 2 loops. R = K|[x,y], T = {yx}.

With y = x, N} = {xy,x*} Thus VW (T) = K? since there are
no overlap relations.

8yx = yx — Axy — Bx?

B =0,A=# 0,1: quantum affine planes;A = 0 all isomorphic
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n=3
Length lex ordering. R = K[x,y,z] with z > y > x
Then T = {zy,zx,yx} and N = {x'yiz¥ | i j, k > 0}
8z = 2y — Ayz — By? — Cxz — Dxy — Ex?
gox = 2x — Fyz — Gy? — Hxz — Ixy — Jx?
8yx = yx — Lxz — Mxy — Px?

Thus V(T) is a variety in K13

There is one overlap relation

8zyX — Z8yx

Obtain equations in 13 variables, some of which are degree 4.
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There are two ways to apply these results.

1. Have a particular algebra in mind and study the variety(ies) it
lies in.

2. Have a particular monomial algebra and study the algebras in its
variety.

Another useful tool, is specialization; i.e., fixing the values of some
of the coefficients c; , that occur. This is done by adding
appropriate polynomials of the form

Xt,n — Qi n

to the ideal of the variety.

Again we get an affine algebraic subvariety of V' (that need not
contain (0)).
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Admissible ideals

Given a set of tip-reduced paths 7, then | = (T) is admissible if
JmC | C J? forsomem>2. "

Note that / is admissible if and only if A/ is finite.

In general, if Al,,, = A with A" = KQ/I’, I’ need not be admissible.

Proposition
V29 the algebras in V defined by admissible ideals is an algebraic
subvariety.
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Quasi-hereditary algebras were introduce by L. Scott (1988) to
study highest weight categories. Further important early work was
done by Cline-Parshall-Scott 1989 and Ringel 1991.

Let A= KQ/I with JN C I C J2 for some N > 2.

Let L be a two-sided ideal in A. We say L is a heredity ideal in A if
1. L = AeA for some idempotent e in A,

2. el\e is a semisimple ring

3. AeAis a left projective A-module.

We say A is a quasi-hereditary algebra if there exist a chain of
two-sided ideals 0 = Lo C Ly C -+ C Ly, = Asuch that L;/L;_1 is
a heredity ideal in A/Lj_1, fori=1,...,m.

0=LpC Ly C---CLy=ANAiscalled a heredity chain.
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The monomial case: If p=v; - v, — -+ — v, is a path in Q,

then we say vo, vs, ..., v,_1 are internal to p.
If v £ vy, ...,vy_1 we say v is not internal to p.
Proposition

Let N = KQ/I be a finite dimensional K-algebra with | a
monomial ideal with minimal set p of generators of paths. Let v be
a vertex of Q. Then AvA is a heredity ideal if and only for all

p € p, v is not internal to p.

This provides an algorithm to determine whether or not a finite
dimensional monomial algebra is quasi-hereditary.

General case

Theorem
Let A= KQ/I with JN C | C J2. If Apon is quasi-hereditary, then
so is A.
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A combinatorics problem

Let A be a quasi-hereditary algebra and C is the length of shortest
heredity chain.

Then gl. dim(A) < 2C — 2 (Dlab-Ringel)
Problem: Let Q be a (finite) quiver.

Find an algorithm to construct a minimal length heredity chain in
KQ@. Find a bound, upper or lower, on C in terms of Q.

Note that if e = v; + - - - 4 v, then eJe = 0 iff for i, there is no
path from v; to v;.

This is necessary and sufficient for KQeKQ to be a heredity ideal
in KQ.



