Singularity categories of some noncommutative deformations

Simon Crawford

The University of Edinburgh

July 25th 2017

Commutative singularities

- Work over $\mathbb{k} = \mathbb{C}$.
- Commutative ring $R \rightsquigarrow$ Geometric object Spec R.
- ▶ In particular, we can study the singularities of Spec *R*.
- e.g. $R = \mathbb{C}[x, y, z]/(x^2 + y^2 z^2)$

This is an example of an A₁ singularity.

Noncommutative singularities

- What about if R is noncommutative?
- One issue: Spec $R = \{ \text{prime ideals of } R \}$ is often too small.
- "Geometric properties of Spec R" \leftrightarrow "Algebraic properties of R"
- ► ~→ If R is noncommutative, we say it has a geometric property if it has the corresponding algebraic property.
- Commutative fact: Spec R is smooth \Leftrightarrow gl.dim $R < \infty$.

Definition

A (possibly noncommutative) ring R is singular (resp. smooth or nonsingular) if its global dimension is infinite (resp. finite).

► We would also like the be able to describe the singularities of *R*.

Singularity categories

- ► Technical standing assumption: R is Gorenstein i.e. noetherian and i.dim R_R = i.dim _RR < ∞.</p>
- In '86, Buchweitz defined the singularity category of a noetherian ring R to be

$$\mathscr{D}_{\mathsf{sg}}(R) := rac{\mathscr{D}^{\mathsf{b}}(R)}{\operatorname{Perf}\,R}.$$

This is a triangulated category (with translation Σ).

Lemma

 $\mathscr{D}_{sg}(R)$ is trivial $\Leftrightarrow R$ is smooth.

- ▶ Observation: don't need *R* to be commutative.
- We can compare the singularities of two rings by comparing their singularity categories.
- "The bigger $\mathscr{D}_{sg}(R)$, the more singular R is."

Example: Kleinian singularities

- Family of surface singularities with coordinate rings ℂ[u, v]^G ≅ ℂ[x, y, z]/(f), where G is a finite subgroup of SL(2, ℂ).
- ▶ Parametrised by simply laced Dynkin diagrams *Q*. Write *R*_{*Q*} for the corresponding coordinate ring.
- Properties of $\mathscr{D}_{sg}(R_Q)$:
 - Krull-Schmidt category;
 - ▶ {indecomposable objects} \leftrightarrow {vertices of Q};
 - \triangleright Σ induces a graph automorphism of Q.
- ▶ e.g. *R*_{A₅}

- In '98, Crawley-Boevey and Holland introduced a family of deformations O^λ(Q̃) of the R_Q = C[u, v]^G.
- Require two pieces of data:
 - ▶ an extended Dynkin graph \hat{Q} ;

Singularity categories of deformations

- In '98, Crawley-Boevey and Holland introduced a family of deformations O^λ(Q̃) of the R_Q = C[u, v]^G.
- Require two pieces of data:
 - ▶ an extended Dynkin graph \hat{Q} ;
 - ▶ a weight $\lambda \in \mathbb{C}^{Q_0}$ (a complex number for each vertex of \widetilde{Q}).
- ▶ If we input a type \widetilde{Q} graph, we are deforming R_Q .
- ▶ We need another definition before we can define the deformations.

Deformed preprojective algebras

▶ Let *Q* be a quiver without loops.

- Choose a weight λ .
- ► Then the deformed preprojective algebra is Π^λ(Q) = CQ/I, where I is the two-sided ideal with generators

$$\sum_{\alpha \in Q_1 \atop t(\alpha)=i} \alpha \overline{\alpha} - \sum_{\alpha \in Q_1 \atop h(\alpha)=i} \overline{\alpha} \alpha = \lambda_i e_i$$

- ▶ Recall that $\mathcal{O}^{\lambda}(\widetilde{Q})$ depends on the data of an extended Dynkin graph \widetilde{Q} and a weight $\lambda \in \mathbb{C}^{\widetilde{Q}_0}$.
- ▶ Choose any orientation for the edges of \widetilde{Q} to get a quiver \widetilde{Q} . Then

$$\mathcal{O}^{\lambda}(\widetilde{Q})\coloneqq e_{0}\Pi^{\lambda}(\widetilde{Q})e_{0}.$$

Easy to write down a presentation in type A:

$$\frac{\mathbb{C}\langle x, y, z \rangle}{\left\langle \begin{array}{c} xz = (z + \sum_{i=0}^{n} \lambda_i)x, \quad xy = \prod_{i=0}^{n} \left(z + \sum_{j=1}^{i} \lambda_j \right) \\ yz = (z - \sum_{i=0}^{n} \lambda_i)y, \quad yx = \prod_{i=0}^{n} \left(z - \sum_{j=1}^{i} \lambda_j \right) \end{array} \right\rangle},$$

i.e., they're examples of generalised Weyl algebras.

Some properties of
$$\mathcal{O}^\lambda(\widetilde{Q})$$

Why are these deformations?

Lemma (Crawley-Boevey – Holland)

(1) $\mathcal{O}^{\mathbf{0}}(\widetilde{Q}) \cong R_Q$.

- (2) There exists a filtration of $\mathcal{O}^{\lambda}(\widetilde{Q})$ such that $\operatorname{gr} \mathcal{O}^{\lambda}(\widetilde{Q}) \cong R_Q$.
 - ▶ It is also easy to detect when $\mathcal{O}^{\lambda}(\widetilde{Q})$ is commutative:

Lemma (Crawley-Boevey-Holland)

 $\mathcal{O}^{\lambda}(\widetilde{\mathbb{A}}_n)$ is commutative iff $\sum_{i=0}^n \lambda_i = 0$ (there are similar conditions for the other types).

Example

• Consider $\mathcal{O}^{\lambda}(\widetilde{Q})$ for the following data:

The problem

Goal

Determine $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})).$

• This is difficult for arbitrary λ . We can simplify matters, but first:

Definition

Call a weight quasi-dominant if λ_i "lies in the right-half of the complex plane" for all $i \ge 1$.

Simplifying the problem

Lemma (Boddington – Levy)

Given a weight λ for \widetilde{Q} , there exists a quasi-dominant weight λ' such that $\mathcal{O}^{\lambda}(\widetilde{Q}) \cong \mathcal{O}^{\lambda'}(\widetilde{Q})$.

- ▶ Henceforth, assume all weights are quasi-dominant.
- Aside: there is an algorithm to find λ' .

Detecting smoothness

▶ This makes it easy to detect smoothness:

Lemma (Crawley-Boevey-Holland)

 $\mathcal{O}^{\lambda}(\widetilde{Q})$ is singular iff $\lambda_i = 0$ for some $i \neq 0$.

► For example:

Commutative and singular

Noncommutative and singular

Detecting smoothness

▶ This makes it easy to detect smoothness:

Lemma (Crawley-Boevey-Holland)

 $\mathcal{O}^{\lambda}(\widetilde{Q})$ is singular iff $\lambda_i = 0$ for some $i \neq 0$.

► For example:

Commutative and smooth

Noncommutative and smooth

The main result

Theorem (C., 2016)

Let \widetilde{Q} be an extended Dynkin graph, and let λ be a quasi-dominant weight for \widetilde{Q} . Write Q_{λ} for the full subgraph of \widetilde{Q} obtained by removing

vertex 0, and

• each vertex
$$i \ge 1$$
 with $\lambda_i \ne 0$.

Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$ is a disjoint union of Dynkin graphs, and there is a triangle equivalence

$$\mathscr{D}_{\mathsf{sg}}(\mathcal{O}^{\lambda}(\widetilde{Q}))\simeq igoplus_{i=1}^{\mathsf{r}}\mathscr{D}_{\mathsf{sg}}(\mathsf{R}_{\mathsf{Q}_{i}}).$$

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Singularity categories of deformations

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Singularity categories of deformations

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, (Q_i Dynkin), and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Singularity categories of deformations

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Singularity categories of deformations

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Theorem (C., 2016)

Let $\widetilde{Q} \in \{\widetilde{\mathbb{A}}, \widetilde{\mathbb{D}}, \widetilde{\mathbb{E}}\}\)$ and λ be quasi-dominant. Let Q_{λ} be the full subgraph of \widetilde{Q} obtained by removing vertex 0 and each vertex $i \ge 1$ with $\lambda_i \ne 0$. Then $Q_{\lambda} = \bigsqcup_{i=1}^{r} Q_i$, $(Q_i \ Dynkin)$, and $\mathscr{D}_{sg}(\mathcal{O}^{\lambda}(\widetilde{Q})) \simeq \bigoplus_{i=1}^{r} \mathscr{D}_{sg}(R_{Q_i})$.

Some remarks

- Intuition: deforming a singularity should make it no more singular. This is true for deformations of Kleinian singularities.
- ▶ If λ is quasi-dominant, $\mathcal{O}^{\lambda}(\widetilde{Q})$ is commutative, and $\mu = (\lambda_0 + 1, \lambda_1, \dots, \lambda_n)$, then we think of $\mathcal{O}^{\mu}(\widetilde{Q})$ as a noncommutative analogue of $\mathcal{O}^{\lambda}(\widetilde{Q})$.
 - ▶ They have the same singularity categories.
 - If λ = 0 and μ is as above, then there is a noncommutative version of the geometric McKay correspondence.

Crawley-Boevey-Holland's deformations done right

- Crawley-Boevey Holland's original paper introduced the deformations differently. Here's what they actually did:
- ▶ Let $G \leq SL(2, \mathbb{C})$ with associated extended Dynkin graph \widetilde{Q} and let $S = \mathbb{C}[u, v] \# G$.
- ► Crawley-Boevey Holland showed that one can deform S to get an algebra S^λ and that
 - ► $S^{\lambda} \sim \Pi^{\lambda}(\widetilde{Q})$; and ► if $e = \frac{1}{|G|} \sum_{g \in G} g$, then $eS^{\lambda}e \cong O^{\lambda}(\widetilde{Q})$.
- ► Can we replace C[u, v] and G with sensible alternatives and get similar results?

A noncommutative generalisation of CBH's work

- Chan, Kirkman, Walton & Zhang recently classified all pairs (A, H) where:
 - ▶ A is an AS-regular algebra of global dimension 2; and
 - ► *H* is a semisimple Hopf algebra acting inner faithfully on *A* with trivial homological determinant.
- ► ~→ These actions are like the actions of finite subgroups of SL(n, C) on C[x₁,...,x_n].
- ► CKWZ have shown that analogues of results in the Auslander-McKay correspondence for finite subgroups of SL(2, C) hold for the pairs (A, H).
- ► I'll restrict attention to the case where H = CG for some group G. How much of CBH's work generalises?

The pairs (A, G)

	Case	A	G	\widetilde{Q}
	(0)	$\mathbb{C}[u, v]$	$G \underset{\text{fin}}{\leqslant} \operatorname{SL}_2(\mathbb{C})$	$\widetilde{\mathbb{A}} ext{-}\widetilde{\mathbb{D}} ext{-}\widetilde{\mathbb{E}}$
	(i)	$\mathbb{C}_q[u, v]$	C_{n+1}	$\widetilde{\mathbb{A}}_n$
	(ii)	$\mathbb{C}_{-1}[u,v]$	<i>C</i> ₂	$\widetilde{\mathbb{L}}_1$
	(iii)	$\mathbb{C}_{-1}[u,v]$	D _n	$\begin{cases} \widetilde{\mathbb{D}}_{\frac{n+4}{2}} & n \text{ even} \\ \widetilde{\mathbb{DL}}_{\frac{n+1}{2}} & n \text{ odd} \end{cases}$
	(iv)	$\mathbb{C}_{J}[u,v]$	<i>C</i> ₂	$\widetilde{\mathbb{A}}_1$
$\widetilde{\mathbb{L}}_1$	$ \underbrace{ 0 }_{1} _{0} \underbrace{ \mathbb{DL}}_{n} \underbrace{ 2 }_{0} \underbrace{ 3 }_{1} \underbrace{ \dots }_{n-1} \underbrace{ n }_{n-1} \underbrace{ n }_{n} \underbrace{ 1 }_{n} $			

Deformations of A # G and A^G

▶ Fact:
$$e(A \# G)e \cong A^G$$
.

- One can deform the algebras A # G and A^G in the same way as CBH did to get algebras (A # G)^λ and e(A # G)^λe, where λ ∈ C^{Q̃}₀.
- These deformations have nice properties:

Proposition (C.)

- (A # G)^λ is a prime, noetherian, finitely generated C-algebra. It is Auslander-regular of global dimension ≤ 2, and Cohen-Macaulay of GK dimension 2.
- ► e(A # G)^λe is a finitely generated C-algebra which is a noetherian domain. It is Auslander-Gorenstein, and Cohen-Macaulay of GK dimension 2.

Deformed "preprojective algebras"

Fix q ∈ C[×]. Define the quantum deformed preprojective algebra Π^λ_q(Ã_n) as the path algebra with relations ____

$$\alpha_i \overline{\alpha}_i - q \alpha_{i-1} \overline{\alpha}_{i-1} = \lambda_i e_i.$$

 Define Δ^λ as the path algebra with relations

$$\alpha_0 \overline{\alpha}_0 - \overline{\alpha}_1 \alpha_1 - \alpha_0 \alpha_1 = \lambda_0 e_0$$

$$\alpha_1 \overline{\alpha}_1 - \overline{\alpha}_0 \alpha_0 - \alpha_1 \alpha_0 = \lambda_1 e_1.$$

Morita equivalences and isomorphisms between deformations

Let G ≤ SL(2, C) with associated extended Dynkin graph Q. Then Crawley-Boevey – Holland's results can be written as
 (C[u, v] # G)^λ ~ Π^λ(Q); and
 e(C[u, v] # G)^λe ≅ e₀Π^λ(Q)e₀.

These results generalise to our new setting:

Theorem (C., 2016)

Case (i):
$$(\mathbb{C}_q[u, v] \# C_{n+1})^{\lambda} \sim \Pi_q^{\lambda}(\widetilde{\mathbb{A}}_n)$$
 and
 $e(\mathbb{C}_q[u, v] \# C_{n+1})^{\lambda} e \cong e_0 \Pi_q^{\lambda}(\widetilde{\mathbb{A}}_n) e_0.$
Cases (ii)-(iii): $(A \# G)^{\lambda} \sim \Pi^{\lambda}(\widetilde{Q})$ and $e(A \# G)^{\lambda} e \cong e_0 \Pi^{\lambda}(\widetilde{Q}) e_0.$
Case (iv): $(\mathbb{C}_J[u, v] \# C_2)^{\lambda} \sim \Delta^{\lambda}$ and $e(\mathbb{C}_J[u, v] \# C_2)^{\lambda} e \cong e_0 \Delta^{\lambda} e_0.$

Auslander's Theorem for the deformations

▶ We have the following well-known theorem:

Auslander's Theorem (1962)

Let $G \underset{\text{fin}}{\leq} \text{GL}(n, \mathbb{C})$ be a small group acting on $S \coloneqq \mathbb{C}[x_1, \ldots, x_n]$. Then $\text{End}_{S^G}(S) \cong S \# G$.

Chan-Kirkman-Walton-Zhang recently proved the following:

Theorem (Chan-Kirkman-Walton-Zhang, 2016)

Let (A, G) be a pair from the earlier table. Then $\operatorname{End}_{A^G}(A) \cong A \# G$.

► A slightly stronger result can be proved using different techniques:

Theorem (C., 2017)

The deformations $(A \# G)^{\lambda}$ are maximal orders, and End_{e(A # G)^{\lambda}e}(A) \cong $(A \# G)^{\lambda}$.

Future questions

- ► What do the singularity categories of the deformations e(A # G)^λe look like?
 - ▶ When $\lambda = \mathbf{0}$ (so $e(A \# G)^{\lambda} e \cong A^{G}$), I can answer this.
- How do the global dimensions of $(A \# G)^{\lambda}$ and $e(A \# G)^{\lambda}e$ vary with λ ?
- How does the number of finite dimensional simple modules over (A # G)^λ and e(A # G)^λe vary with λ?
- ▶ Is $(A \# G)^{\lambda}$ ever Morita equivalent to $e(A \# G)^{\lambda}e$?