Tracing a Path – From Walks on Graphs to Invariant Theory (and Beyond)

Georgia Benkart University of Wisconsin-Madison

Algebra Extravaganza! A Conference in Honor of Ellen Kirkman and Martin Lorenz Temple University July 25, 2017

A Walkthrough

How many walks of k steps

The talk will focus on

The talk will focus on

(a) walks on graphs

The talk will focus on

(a) walks on graphs

(b) multiplicities of simple summands of representations

The talk will focus on

(a) walks on graphs

(b) multiplicities of simple summands of representations

(c) invariants and Molien-type formulas

How many walks of k steps are there from **0** to γ ?

The talk will focus on

(a) walks on graphs

(b) multiplicities of simple summands of representations

(c) invariants and Molien-type formulas

(d) McKay-Cartan matrices and their dynamics

How many walks of *k* steps are there from **0** to γ ?

The talk will focus on

(a) walks on graphs

(b) multiplicities of simple summands of representations

(c) invariants and Molien-type formulas

(d) McKay-Cartan matrices and their dynamics

(e) Hopf algebra representations

How many walks of *k* steps are there from **0** to γ ?

The talk will focus on

(a) walks on graphs

(b) multiplicities of simple summands of representations

(c) invariants and Molien-type formulas

(d) McKay-Cartan matrices and their dynamics

(e) Hopf algebra representations

and ways to study them using characters

Walking with groups

Walking with groups

▶ G group, $|G| < \infty$

- ▶ G group, $|G| < \infty$
- ▶ V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$

- ▶ G group, $|G| < \infty$
- ▶ V a finite-dim'l G-module over \mathbb{C} with character χ_{v} $(\chi_{v}(g) = \text{trace}_{v}(g))$

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ▶ $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

• nodes: $\{\alpha\}_{\alpha\in\Gamma}$

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

- nodes: $\{\alpha\}_{\alpha\in\Gamma}$
- ▶ edges: $a_{\alpha,\gamma}$ edges α to γ if

- ▶ G group, $|G| < \infty$
- ▶ V a finite-dim'l G-module over \mathbb{C} with character χ_{v} ($\chi_{v}(g) = \text{trace}_{v}(g)$)
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

• nodes: $\{\alpha\}_{\alpha\in\Gamma}$

► edges: $\mathbf{a}_{\alpha,\gamma}$ edges α to γ if $\chi_{\alpha} \cdot \chi_{\mathbf{v}} = \sum_{\gamma \in \Gamma} \mathbf{a}_{\alpha,\gamma} \chi_{\gamma}$

- ▶ G group, $|G| < \infty$
- ► V a finite-dim'l G-module over \mathbb{C} with character $\chi_{\mathbf{v}}$ $(\chi_{\mathbf{v}}(g) = \text{trace}_{\mathbf{v}}(g))$
- ► $\{S_{\alpha}\}_{\alpha \in \Gamma}$ simple G-modules and $\{\chi_{\alpha}\}_{\alpha \in \Gamma}$ their characters
- $|\Gamma|$ the number of conjugacy classes of G

• nodes: $\{\alpha\}_{\alpha\in\Gamma}$

► edges: $\mathbf{a}_{\alpha,\gamma}$ edges α to γ if $\chi_{\alpha} \cdot \chi_{\vee} = \sum_{\gamma \in \Gamma} \mathbf{a}_{\alpha,\gamma} \chi_{\gamma}$

• McKay matrix: $A = (a_{\alpha,\gamma})_{\alpha,\gamma\in\Gamma}$

joint with D. Moon (2016)

< □ > < 部 > < E > < E > E の Q () 23/184 joint with D. Moon (2016)

Thm. Let G, V and A be as before.

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \chi_{lpha}(g) \ \chi_{\scriptscriptstyle V}(g)^k \ \overline{\chi_{\gamma}(g)}$$

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \ \chi_{lpha}(g) \ \chi_{\lor}(g)^k \ \overline{\chi_{\gamma}(g)}$$

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{\Gamma}} |\mathfrak{C}_{\beta}| \ \chi_{\alpha}(\mathsf{c}_{\beta}) \ \chi_{\mathsf{V}}(\mathsf{c}_{\beta})^{k} \ \overline{\chi_{\gamma}(\mathsf{c}_{\beta})}$$

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \ \chi_{lpha}(g) \ \chi_{\lor}(g)^k \ \overline{\chi_{\gamma}(g)}$$

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{\Gamma}} |\mathfrak{C}_{\beta}| \ \chi_{\alpha}(\mathsf{c}_{\beta}) \ \chi_{\vee}(\mathsf{c}_{\beta})^{k} \ \overline{\chi_{\gamma}(\mathsf{c}_{\beta})}$$

• The multiplicity of S_{γ} in $V^{\otimes k}$ is $(A^k)_{0,\gamma}$ where

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \ \chi_{lpha}(g) \ \chi_{\lor}(g)^k \ \overline{\chi_{\gamma}(g)}$$

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{F}} |\mathfrak{C}_{\beta}| \ \chi_{\alpha}(\mathsf{c}_{\beta}) \ \chi_{\vee}(\mathsf{c}_{\beta})^{k} \ \overline{\chi_{\gamma}(\mathsf{c}_{\beta})}$$

• The multiplicity of S_{γ} in $V^{\otimes k}$ is $(A^k)_{\mathbf{0},\gamma}$ where

 $\chi_{\mathbf{0}}$: trivial G-character ($\chi_{\mathbf{0}}(g) = 1$ for all $g \in G$)

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \ \chi_{lpha}(g) \ \chi_{\lor}(g)^k \ \overline{\chi_{\gamma}(g)}$$

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{\Gamma}} |\mathfrak{C}_{\beta}| \ \chi_{\alpha}(\mathsf{c}_{\beta}) \ \chi_{\vee}(\mathsf{c}_{\beta})^{k} \ \overline{\chi_{\gamma}(\mathsf{c}_{\beta})}$$

- The multiplicity of S_{γ} in $V^{\otimes k}$ is $(A^k)_{0,\gamma}$ where
- χ_0 : trivial G-character ($\chi_0(g) = 1$ for all $g \in G$)

 $\begin{array}{c} \chi_{\mathbf{0}} \cdot \underbrace{\chi_{\mathbf{v}} \cdot \chi_{\mathbf{v}} \cdots \cdot \chi_{\mathbf{v}}}_{k \text{ times}} \\ (\text{character of } \mathbf{V}^{\otimes k}) \end{array}$

• Then the number of walks of k steps on $\mathcal{M}_{V}(G)$ from α to γ is:

$$(\mathsf{A}^k)_{lpha,\gamma} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \ \chi_{lpha}(g) \ \chi_{\lor}(g)^k \ \overline{\chi_{\gamma}(g)}$$

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{\Gamma}} |\mathfrak{C}_{\beta}| \ \chi_{\alpha}(\mathsf{c}_{\beta}) \ \chi_{\vee}(\mathsf{c}_{\beta})^{k} \ \overline{\chi_{\gamma}(\mathsf{c}_{\beta})}$$

• The multiplicity of S_{γ} in $V^{\otimes k}$ is $(A^k)_{\mathbf{0},\gamma}$ where

$$\begin{array}{ll} \chi_{\mathbf{0}}: \mbox{ trivial G-character } & (\chi_{\mathbf{0}}(g) = 1 \mbox{ for all } g \in \mathbf{G}) \\ \chi_{\mathbf{0}} \cdot & \underbrace{\chi_{\mathbf{V}} \cdot \chi_{\mathbf{V}} \cdots \cdot \chi_{\mathbf{V}}}_{k \mbox{ times }} & = \sum_{\gamma \in \Gamma} \underbrace{(\mathbf{A}^{k})_{\mathbf{0},\gamma}}_{\# \mbox{ walks } k \mbox{ steps 0 to } \gamma} & \chi_{\gamma} \\ & (\mbox{character of } \mathbf{V}^{\otimes k}) & (\mbox{ multiplicity of } \mathbf{S}_{\gamma} \mbox{ in } \mathbf{V}^{\otimes k}) \end{array}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三

< □ > < 률 > < 클 > < 클 > = ♡ < ♡ 32/184

• $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules • $\omega := e^{2\pi i/n}$

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules
- ► $\omega := e^{2\pi i/n}$
- $\chi_{\alpha}(\beta) = \omega^{\alpha\beta}$ their characters so $\chi_{\alpha} \cdot \chi_{\alpha'} = \chi_{\alpha+\alpha'}$
- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules
- ► $\omega := e^{2\pi i/n}$
- $\chi_{\alpha}(\beta) = \omega^{\alpha\beta}$ their characters so $\chi_{\alpha} \cdot \chi_{\alpha'} = \chi_{\alpha+\alpha'}$
- ► $V = S_1 \oplus S_{n-1}$

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules
- ► $\omega := e^{2\pi i/n}$
- $\chi_{\alpha}(\beta) = \omega^{\alpha\beta}$ their characters so $\chi_{\alpha} \cdot \chi_{\alpha'} = \chi_{\alpha+\alpha'}$
- $\blacktriangleright V = S_1 \oplus S_{n-1}$
- $\blacktriangleright \ \chi_{\alpha} \cdot \chi_{\nu} = \chi_{\alpha+1} + \chi_{\alpha+n-1} = \chi_{\alpha+1} + \chi_{\alpha-1}$

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules
- $\omega := e^{2\pi i/n}$
- $\chi_{\alpha}(\beta) = \omega^{\alpha\beta}$ their characters so $\chi_{\alpha} \cdot \chi_{\alpha'} = \chi_{\alpha+\alpha'}$
- ► $V = S_1 \oplus S_{n-1}$
- $\blacktriangleright \ \chi_{\alpha} \cdot \chi_{\nu} = \chi_{\alpha+1} + \chi_{\alpha+n-1} = \chi_{\alpha+1} + \chi_{\alpha-1}$

The McKay quiver $\mathcal{M}_V(G)$:

- $G = \mathbb{Z}/n\mathbb{Z} =: \mathbb{Z}_n$ cyclic group
- $\{S_{\alpha}\}_{\alpha \in \{0,1,\dots,n-1\}}$ simple G-modules
- $\omega := e^{2\pi i/n}$
- $\chi_{\alpha}(\beta) = \omega^{\alpha\beta}$ their characters so $\chi_{\alpha} \cdot \chi_{\alpha'} = \chi_{\alpha+\alpha'}$
- ► $V = S_1 \oplus S_{n-1}$
- $\blacktriangleright \ \chi_{\alpha} \cdot \chi_{\mathsf{V}} = \chi_{\alpha+1} + \chi_{\alpha+n-1} = \chi_{\alpha+1} + \chi_{\alpha-1}$

The McKay quiver $\mathcal{M}_V(G)$:

Example - cyclic (cont.)

Example - cyclic (cont.)

The no. of walks of k steps on a circular graph with n nodes is:

Example - cyclic (cont.)

The no. of walks of k steps on a circular graph with n nodes is:

43/184

since $\sum_{\beta=0}^{n-1} \omega^{m\beta} = \begin{cases} n & \text{if } m \equiv 0 \mod n \\ 0 & \text{otherwise.} \end{cases}$

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

• $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

- $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules
- ▶ $V = S_{\varepsilon_1} \oplus \cdots \oplus S_{\varepsilon_n}$ where $\varepsilon_j = (0, ..., 1, ..., 0)$ (*j*th slot)

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

- $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules
- ▶ $V = S_{\varepsilon_1} \oplus \cdots \oplus S_{\varepsilon_n}$ where $\varepsilon_j = (0, ..., 1, ..., 0)$ (*j*th slot)
- $\blacktriangleright \ \chi_{\alpha} \cdot \chi_{\mathbf{v}} = \bigoplus_{j=1}^{n} \chi_{\alpha + \varepsilon_j}$

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

• $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules

▶
$$V = S_{\varepsilon_1} \oplus \cdots \oplus S_{\varepsilon_n}$$
 where $\varepsilon_j = (0, ..., 1, ..., 0)$ (*j*th slot)

$$\blacktriangleright \ \chi_{\alpha} \cdot \chi_{\mathbf{v}} = \bigoplus_{j=1}^{n} \chi_{\alpha + \varepsilon_j}$$

The no. of walks of *k* steps on $\mathcal{M}_V(G)$ from $\alpha = (\alpha_1, \ldots, \alpha_n)$ to $\gamma = (\gamma_1, \ldots, \gamma_n)$ is:

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

• $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules

▶
$$V = S_{\varepsilon_1} \oplus \cdots \oplus S_{\varepsilon_n}$$
 where $\varepsilon_j = (0, ..., 1, ..., 0)$ (*j*th slot)

The no. of walks of k steps on $\mathcal{M}_V(G)$ from $\alpha = (\alpha_1, \dots, \alpha_n)$ to $\gamma = (\gamma_1, \dots, \gamma_n)$ is:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\blacktriangleright \mathbf{G} = \mathbb{Z}_{\mathbf{r}_1} \times \cdots \times \mathbb{Z}_{\mathbf{r}_n}, \quad \omega_j = \mathbf{e}^{2\pi i/r_j},$$

• $\{S_{\alpha}\}_{\alpha\in G}$ simple G-modules

▶
$$V = S_{\varepsilon_1} \oplus \cdots \oplus S_{\varepsilon_n}$$
 where $\varepsilon_j = (0, ..., 1, ..., 0)$ (*j*th slot)

The no. of walks of k steps on $\mathcal{M}_V(G)$ from $\alpha = (\alpha_1, \dots, \alpha_n)$ to $\gamma = (\gamma_1, \dots, \gamma_n)$ is:

$$(\mathsf{A}^{k})_{\alpha,\gamma} = |\mathsf{G}|^{-1} \sum_{\beta \in \mathsf{G}} \chi_{\alpha}(\beta) \chi_{\nu}(\beta)^{k} \overline{\chi_{\gamma}(\beta)}$$
$$= (r_{1} \cdots r_{n})^{-1} \sum_{\beta = (\beta_{1}, \dots, \beta_{n}) \atop 0 \leq \beta_{j} < r_{j}} \omega_{1}^{(\alpha_{1} - \gamma_{1})\beta_{1}} \cdots \omega_{n}^{(\alpha_{n} - \gamma_{n})\beta_{n}} \left(\sum_{j=1}^{n} \omega_{j}^{\beta_{j}} \right)^{k}$$

$$\mathsf{g}^{\gamma}(t) := \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\gamma} \frac{t^{k}}{k!}$$

$$= (r_1 \cdots r_n)^{-1} \sum_{k=0}^{\infty} \sum_{\beta=(\beta_1,\dots,\beta_n) \atop 0 \le \beta_j < r_j} \omega_1^{-\gamma_1 \beta_1} \cdots \omega_n^{-\gamma_n \beta_n} \left(\sum_{j=1}^n \omega_j^{\beta_j} \right)^k \frac{t^k}{k!}$$
$$= \left(r_1^{-1} \sum_{\beta_1=0}^{r_1-1} \omega_1^{-\gamma_1 \beta_1} \mathbf{e}^{\omega_1^{\beta_1} t} \right) \cdots \left(r_n^{-1} \sum_{\beta_n=0}^{r_n-1} \omega_n^{-\gamma_n \beta_n} \mathbf{e}^{\omega_n^{\beta_n} t} \right)$$

$$\mathsf{g}^{\gamma}(t) := \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\gamma} \frac{t^{k}}{k!}$$

$$= (r_1 \cdots r_n)^{-1} \sum_{k=0}^{\infty} \sum_{\substack{\beta = (\beta_1, \dots, \beta_n) \\ 0 \le \beta_j < r_j}} \omega_1^{-\gamma_1 \beta_1} \cdots \omega_n^{-\gamma_n \beta_n} \left(\sum_{j=1}^n \omega_j^{\beta_j} \right)^k \frac{t^k}{k!}$$
$$= \left(r_1^{-1} \sum_{\beta_1 = 0}^{r_1 - 1} \omega_1^{-\gamma_1 \beta_1} \mathbf{e}^{\omega_1^{\beta_1} t} \right) \cdots \left(r_n^{-1} \sum_{\beta_n = 0}^{r_n - 1} \omega_n^{-\gamma_n \beta_n} \mathbf{e}^{\omega_n^{\beta_n} t} \right)$$

For $\omega = e^{2\pi i/r}$, consider the generalized hyperbolic function

$$\mathsf{g}^{\gamma}(t) := \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\gamma} \frac{t^{k}}{k!}$$

$$= (r_1 \cdots r_n)^{-1} \sum_{k=0}^{\infty} \sum_{\beta=(\beta_1,\dots,\beta_n) \atop 0 \le \beta_j < r_j} \omega_1^{-\gamma_1\beta_1} \cdots \omega_n^{-\gamma_n\beta_n} \left(\sum_{j=1}^n \omega_j^{\beta_j}\right)^k \frac{t^k}{k!}$$
$$= \left(r_1^{-1} \sum_{\beta_1=0}^{r_1-1} \omega_1^{-\gamma_1\beta_1} \mathbf{e}^{\omega_1^{\beta_1}t}\right) \cdots \left(r_n^{-1} \sum_{\beta_n=0}^{r_n-1} \omega_n^{-\gamma_n\beta_n} \mathbf{e}^{\omega_n^{\beta_n}t}\right)$$

For $\omega = e^{2\pi i/r}$, consider the generalized hyperbolic function

$$h_j(t,r) := r^{-1} \sum_{b=0}^{r-1} \omega^{(1-j)b} e^{\omega^b t} = \sum_{\ell=0}^{\infty} \frac{t^{r\ell+j-1}}{(r\ell+j-1)!}$$

<□▶ <□▶ < □▶ < □▶ < □▶ = □ ○ へ ○

$$\mathsf{g}^{\gamma}(t) := \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\gamma} \frac{t^{k}}{k!}$$

$$= (r_1 \cdots r_n)^{-1} \sum_{k=0}^{\infty} \sum_{\beta=(\beta_1,\dots,\beta_n) \atop 0 \le \beta_j < r_j} \omega_1^{-\gamma_1\beta_1} \cdots \omega_n^{-\gamma_n\beta_n} \left(\sum_{j=1}^n \omega_j^{\beta_j}\right)^k \frac{t^k}{k!}$$
$$= \left(r_1^{-1} \sum_{\beta_1=0}^{r_1-1} \omega_1^{-\gamma_1\beta_1} \mathbf{e}^{\omega_1^{\beta_1}t}\right) \cdots \left(r_n^{-1} \sum_{\beta_n=0}^{r_n-1} \omega_n^{-\gamma_n\beta_n} \mathbf{e}^{\omega_n^{\beta_n}t}\right)$$

For $\omega = e^{2\pi i/r}$, consider the generalized hyperbolic function

$$h_j(t,r) := r^{-1} \sum_{b=0}^{r-1} \omega^{(1-j)b} e^{\omega^b t} = \sum_{\ell=0}^{\infty} \frac{t^{r\ell+j-1}}{(r\ell+j-1)!}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
56/184

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Counting walks Thm. Let $G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then

Counting walks
Thm. Let
$$\mathbf{G} = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = \mathbf{e}^{2\pi i/r_j}$, and $\mathbf{V} = \bigoplus_{j=1}^n \mathbf{S}_{\varepsilon_j}$. Then
 $\mathbf{g}^{\gamma}(t) = \mathbf{h}_{1+\gamma_1}(t, r_1) \cdots \mathbf{h}_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

Counting walks
Thm. Let
$$\mathbf{G} = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = \mathbf{e}^{2\pi i/r_j}$, and $\mathbf{V} = \bigoplus_{j=1}^n \mathbf{S}_{\varepsilon_j}$. Then
 $\mathbf{g}^{\gamma}(t) = \mathbf{h}_{1+\gamma_1}(t, r_1) \cdots \mathbf{h}_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

Counting walks
Thm. Let
$$G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then
 $g^{\gamma}(t) = h_{1+\gamma_1}(t, r_1) \cdots h_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

$$(\mathsf{A}^{k})_{\mathbf{0},\gamma} = \sum_{\substack{\ell_{1},\ldots,\ell_{n}\\ r_{1}\ell_{1}+\cdots+r_{n}\ell_{n}=k-\sum_{j=1}^{n}\gamma_{j}}} \binom{k}{r_{1}\ell_{1}+\gamma_{1},\ldots,r_{n}\ell_{n}+\gamma_{n}}.$$

Counting walks
Thm. Let
$$G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then
 $g^{\gamma}(t) = h_{1+\gamma_1}(t, r_1) \cdots h_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

$$(\mathsf{A}^{k})_{\mathbf{0},\gamma} = \sum_{\substack{\ell_{1},\ldots,\ell_{n}\\ r_{1}\ell_{1}+\cdots+r_{n}\ell_{n}=k-\sum_{j=1}^{n}\gamma_{j}}} \binom{k}{r_{1}\ell_{1}+\gamma_{1},\ldots,r_{n}\ell_{n}+\gamma_{n}}.$$

Example:
$$G = \mathbb{Z}_2^n$$
, $r = 2$, $\gamma = (\gamma_1, \ldots, \gamma_n)$, $\gamma_j \in \{0, 1\}$.

Counting walks
Thm. Let
$$G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then
 $g^{\gamma}(t) = h_{1+\gamma_1}(t, r_1) \cdots h_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

$$(\mathsf{A}^{k})_{\mathbf{0},\gamma} = \sum_{\substack{\ell_{1},\ldots,\ell_{n}\\ r_{1}\ell_{1}+\cdots+r_{n}\ell_{n}=k-\sum_{j=1}^{n}\gamma_{j}}} \binom{k}{r_{1}\ell_{1}+\gamma_{1},\ldots,r_{n}\ell_{n}+\gamma_{n}}.$$

Example: G =
$$\mathbb{Z}_2^n$$
, $r = 2$, $\gamma = (\gamma_1, \dots, \gamma_n)$, $\gamma_j \in \{0, 1\}$.

$$g^{\gamma}(t) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{2\ell_1+\gamma_1}}{(2\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{2\ell_n+\gamma_n}}{(2\ell_n+\gamma_n)!}\right)$$

$$= \cosh(t)^{n-\mathfrak{h}(\gamma)} \sinh(t)^{\mathfrak{h}(\gamma)} \quad (\mathfrak{h}(\gamma) = \#1 \mathrm{sin} \ \gamma = Hamming \ wt. \ \mathrm{of} \ \gamma).$$

= (0.0.0)

- 2

DQC

(日) (日) (日) (日) (日)

Counting walks
Thm. Let
$$G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then
 $g^{\gamma}(t) = h_{1+\gamma_1}(t, r_1) \cdots h_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

$$(\mathsf{A}^{k})_{\mathbf{0},\gamma} = \sum_{\substack{\ell_{1},\ldots,\ell_{n}\\ r_{1}\ell_{1}+\cdots+r_{n}\ell_{n}=k-\sum_{j=1}^{n}\gamma_{j}}} \binom{k}{r_{1}\ell_{1}+\gamma_{1},\ldots,r_{n}\ell_{n}+\gamma_{n}}.$$

Example: G =
$$\mathbb{Z}_2^n$$
, $r = 2$, $\gamma = (\gamma_1, \dots, \gamma_n)$, $\gamma_j \in \{0, 1\}$.

$$g^{\gamma}(t) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{2\ell_1+\gamma_1}}{(2\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{2\ell_n+\gamma_n}}{(2\ell_n+\gamma_n)!}\right)$$

$$= \cosh(t)^{n-\mathfrak{h}(\gamma)} \sinh(t)^{\mathfrak{h}(\gamma)} \quad (\mathfrak{h}(\gamma) = \#1 \mathrm{s in } \gamma = Hamming \, wt. \text{ of } \gamma).$$

Counting walks
Thm. Let
$$G = \mathbb{Z}_{r_1} \times \cdots \times \mathbb{Z}_{r_n}$$
, $\omega_j = e^{2\pi i/r_j}$, and $V = \bigoplus_{j=1}^n S_{\varepsilon_j}$. Then
 $g^{\gamma}(t) = h_{1+\gamma_1}(t, r_1) \cdots h_{1+\gamma_n}(t, r_n) = \left(\sum_{\ell_1=0}^{\infty} \frac{t^{r_1\ell_1+\gamma_1}}{(r_1\ell_1+\gamma_1)!}\right) \cdots \left(\sum_{\ell_n=0}^{\infty} \frac{t^{r_n\ell_n+\gamma_n}}{(r_n\ell_n+\gamma_n)!}\right)$

$$(\mathsf{A}^{k})_{\mathbf{0},\gamma} = \sum_{\substack{\ell_{1},\ldots,\ell_{n}\\ r_{1}\ell_{1}+\cdots+r_{n}\ell_{n}=k-\sum_{j=1}^{n}\gamma_{j}}} \binom{k}{r_{1}\ell_{1}+\gamma_{1},\ldots,r_{n}\ell_{n}+\gamma_{n}}.$$

Example:

$$G = \mathbb{Z}_{2}^{n}, r = 2, \gamma = (\gamma_{1}, \dots, \gamma_{n}), \gamma_{j} \in \{0, 1\}.$$

$$g^{\gamma}(t) = \left(\sum_{\ell_{1}=0}^{\infty} \frac{t^{2\ell_{1}+\gamma_{1}}}{(2\ell_{1}+\gamma_{1})!}\right) \cdots \left(\sum_{\ell_{n}=0}^{\infty} \frac{t^{2\ell_{n}+\gamma_{n}}}{(2\ell_{n}+\gamma_{n})!}\right)$$

$$= \cosh(t)^{n-\mathfrak{h}(\gamma)} \sinh(t)^{\mathfrak{h}(\gamma)} \quad (\mathfrak{h}(\gamma) = \#1s \text{ in } \gamma = Hamming \text{ wt. of } \gamma).$$

65/184

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- G a finite group,
- ► V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

- G a finite group,
- ▶ V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

$$\mathsf{P}^{\gamma}(t) \, := \sum_{k=0}^{\infty} (\mathsf{A}^k)_{\mathbf{0},\gamma} \, t^k$$

- G a finite group,
- ▶ V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

$$\mathsf{P}^{\gamma}(t) := \sum_{k=0}^{\infty} (\mathsf{A}^k)_{\mathbf{0},\gamma} t^k = \frac{\det(\mathsf{B}^{\gamma})}{\det(\mathsf{I} - t\mathsf{A})}$$

- G a finite group,
- ▶ V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

$$\mathsf{P}^{\gamma}(t) := \sum_{k=0}^{\infty} (\mathsf{A}^k)_{\mathbf{0},\gamma} t^k = \frac{\det(\mathsf{B}^{\gamma})}{\det(\mathsf{I} - t\mathsf{A})} = \frac{\det(\mathsf{B}^{\gamma})}{\prod_{\beta \in \mathsf{\Gamma}} (1 - \chi_{\mathbf{V}}(\mathsf{c}_{\beta})t)}, \text{ where }$$

- G a finite group,
- ▶ V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

$$\mathsf{P}^{\gamma}(t) := \sum_{k=0}^{\infty} (\mathsf{A}^{k})_{\mathbf{0},\gamma} t^{k} = \frac{\det(\mathsf{B}^{\gamma})}{\det(\mathsf{I} - t\mathsf{A})} = \frac{\det(\mathsf{B}^{\gamma})}{\prod_{\beta \in \Gamma} (1 - \chi_{\mathbf{V}}(\mathsf{c}_{\beta})t)}, \text{ where}$$
$$\mathsf{B}^{\gamma} \text{ is the matrix } \mathsf{I} - t\mathsf{A}^{\mathsf{T}} \text{ with column } \gamma \text{ replaced by } \underline{\delta} = \begin{pmatrix} \mathsf{I} \\ \vdots \\ \mathsf{0} \end{pmatrix}.$$

- G a finite group,
- ▶ V a finite-dim'l G-module over C,
- A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$.

$$\mathsf{P}^{\gamma}(t) := \sum_{k=0}^{\infty} (\mathsf{A}^{k})_{\mathbf{0},\gamma} t^{k} = \frac{\det(\mathsf{B}^{\gamma})}{\det(\mathsf{I} - t\mathsf{A})} = \frac{\det(\mathsf{B}^{\gamma})}{\prod_{\beta \in \Gamma} (1 - \chi_{\mathbf{V}}(\mathsf{c}_{\beta})t)}, \text{ where}$$
$$\mathsf{B}^{\gamma} \text{ is the matrix } \mathsf{I} - t\mathsf{A}^{\mathsf{T}} \text{ with column } \gamma \text{ replaced by } \underline{\delta} = \begin{pmatrix} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{pmatrix}.$$
- Thm. (B. 2016) Assume
 - G a finite group,
 - ► V a finite-dim'l G-module over C,
 - A the McKay matrix (adjacency matrix) of $\mathcal{M}_V(G)$

- Thm. (B. 2016) Assume
 - G a finite group,
 - ► V a finite-dim'l G-module over C,
 - ► A the McKay matrix (adjacency matrix) of M_V(G)

Then the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k>0} V^{\otimes k}$ is

- Thm. (B. 2016) Assume
 - G a finite group,
 - ► V a finite-dim'l G-module over C,
 - ► A the McKay matrix (adjacency matrix) of M_V(G)

Then the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k>0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^k\right)_{\mathbf{0},\mathbf{0}} t^k$$

- Thm. (B. 2016) Assume
 - G a finite group,
 - ► V a finite-dim'l G-module over C,
 - ► A the McKay matrix (adjacency matrix) of M_V(G)

Then the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\mathbf{0}} t^{k} = \frac{\det(\mathsf{B}^{\mathbf{0}})}{\det(\mathsf{I} - t\mathsf{A})}$$

- Thm. (B. 2016) Assume
 - G a finite group,
 - ► V a finite-dim'l G-module over C,
 - ► A the McKay matrix (adjacency matrix) of M_V(G)

Then the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k>0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\mathbf{0}} t^{k} = \frac{\det(\mathsf{B}^{\mathbf{0}})}{\det(\mathsf{I} - t\mathsf{A})} = \frac{\det(\mathsf{B}^{\mathbf{0}})}{\prod_{\beta \in \mathsf{\Gamma}} \left(1 - \chi_{\mathsf{V}}(\mathsf{c}_{\beta})t\right)},$$

- Thm. (B. 2016) Assume
 - G a finite group,
 - V a finite-dim'l G-module over C,
 - ► A the McKay matrix (adjacency matrix) of M_V(G)

Then the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k>0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\mathbf{0}} t^{k} = \frac{\det(\mathsf{B}^{\mathbf{0}})}{\det(\mathsf{I} - t\mathsf{A})} = \frac{\det(\mathsf{B}^{\mathbf{0}})}{\prod_{\beta \in \mathsf{\Gamma}} \left(1 - \chi_{\mathsf{V}}(\mathsf{c}_{\beta})t\right)},$$

 B^0 is the matrix $I - tA^T$ with column **0** replaced by $\underline{\delta} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

G: a finite subgroup of $\,SU_2 \quad \text{and} \quad V = \mathbb{C}^2$

- G: a finite subgroup of SU_2 and $V = \mathbb{C}^2$
 - $\mathcal{M}_V(G)$ = the affine Dynkin diagram of type
 - \widehat{A}_{n-1} for \mathbb{Z}_n (cyclic group of order *n*)
 - \widehat{D}_{n+2} for \mathbb{D}_n (binary dihedral group of order 4n)
 - $\blacktriangleright \ \widehat{E}_6 \qquad \mbox{for } \mathbb{T} \quad (\mbox{binary tetrahedral group of order 24})$
 - $\widehat{\mathsf{E}}_7$ for \mathbb{O} (binary octahedral group of order 48)
 - $\widehat{\mathsf{E}}_8$ for I (binary icosahedral group of order 60)

- G: a finite subgroup of $\,SU_2\,$ and $\,V=\mathbb{C}^2\,$
 - $\mathcal{M}_V(G)$ = the affine Dynkin diagram of type
 - \widehat{A}_{n-1} for \mathbb{Z}_n (cyclic group of order *n*)
 - ► \widehat{D}_{n+2} for \mathbb{D}_n (binary dihedral group of order 4*n*)
 - $\blacktriangleright \ \widehat{E}_6 \qquad \mbox{for } \mathbb{T} \quad (\mbox{binary tetrahedral group of order 24})$
 - $\blacktriangleright \ \widehat{\mathsf{E}}_7 \qquad \text{for } \ \mathbb{O} \ \ (\text{binary octahedral group of order 48})$
 - $\widehat{\mathsf{E}}_8$ for I (binary icosahedral group of order 60)

• $\widehat{C} = 2I - A$ (\widehat{C} = affine Cartan matrix)

- G: a finite subgroup of $\,SU_2\,$ and $\,V=\mathbb{C}^2\,$
 - $\mathcal{M}_V(G)$ = the affine Dynkin diagram of type
 - \widehat{A}_{n-1} for \mathbb{Z}_n (cyclic group of order *n*)
 - ► \widehat{D}_{n+2} for \mathbb{D}_n (binary dihedral group of order 4*n*)
 - $\blacktriangleright \ \widehat{E}_6 \qquad \mbox{for } \mathbb{T} \quad (\mbox{binary tetrahedral group of order 24})$
 - $\blacktriangleright \ \widehat{\mathsf{E}}_7 \qquad \text{for } \ \mathbb{O} \ \ (\text{binary octahedral group of order 48})$
 - $\widehat{\mathsf{E}}_8$ for I (binary icosahedral group of order 60)

• $\widehat{C} = 2I - A$ (\widehat{C} = affine Cartan matrix)

Affine Dynkin diagrams

4 ロ ト 4 団 ト 4 三 ト 4 三 ト 三 の 9 0 0
85/184

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m} \in \Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}} \in \widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}, \quad \text{where}$$

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m} \in \Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}} \in \widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\widehat{\mathsf{m}}}{\widehat{\mathsf{h}}}\right)t\right)}, \quad \text{where}$$

A: adjacency matrix of the affine Dynkin diagram corresponding to G;

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m} \in \Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}} \in \widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\widehat{\mathsf{m}}}{\widehat{\mathsf{h}}}\right)t\right)}, \quad \text{where}$$

- A: adjacency matrix of the affine Dynkin diagram corresponding to G;
- Å: adjacency matrix of the corresponding finite Dynkin diagram;

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m} \in \Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}} \in \widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\widehat{\mathsf{m}}}{\widehat{\mathsf{h}}}\right)t\right)}, \quad \text{where}$$

- A: adjacency matrix of the affine Dynkin diagram corresponding to G;
- Å: adjacency matrix of the corresponding finite Dynkin diagram;
- m and h: exponents and Coxeter number of the affine root system;

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m} \in \Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}} \in \widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\widehat{\mathsf{m}}}{\widehat{\mathsf{h}}}\right)t\right)}, \quad \text{where}$$

- A: adjacency matrix of the affine Dynkin diagram corresponding to G;
- Å: adjacency matrix of the corresponding finite Dynkin diagram;
- m and h: exponents and Coxeter number of the affine root system;
- m and h: exponents and Coxeter number of the finite root system.

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = \frac{\det\left(\mathrm{I} - t\mathring{\mathsf{A}}\right)}{\det\left(\mathrm{I} - t\mathsf{A}\right)} = \frac{\prod_{\mathsf{m}\,\in\,\Xi}\left(1 - 2\cos\left(\frac{\pi\mathsf{m}}{\mathsf{h}}\right)t\right)}{\prod_{\widehat{\mathsf{m}}\,\in\,\widehat{\Xi}}\left(1 - 2\cos\left(\frac{\pi\widehat{\mathsf{m}}}{\widehat{\mathsf{h}}}\right)t\right)}, \quad \text{where}$$

- A: adjacency matrix of the affine Dynkin diagram corresponding to G;
- Å: adjacency matrix of the corresponding finite Dynkin diagram;
- m and h: exponents and Coxeter number of the affine root system;
- m and h: exponents and Coxeter number of the finite root system.

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

- G. Gonzalez-Sprinberg and J.L. Verdier (1983)
- B. Kostant (1984)
- T. Springer (1987)

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

T. Springer (1987)

Thm. When $G \subset SU_2$ is finite and $V = \mathbb{C}^2$, then the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

$$\mathbf{s^0}(t) = rac{1+t^{ extsf{h}}}{(1-t^{ extsf{a}})(1-t^{ extsf{b}})}$$
 where

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

T. Springer (1987)

Thm. When $G \subset SU_2$ is finite and $V = \mathbb{C}^2$, then the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

$$\mathbf{s^0}(t) = rac{1+t^{\mathsf{h}}}{(1-t^{\mathsf{a}})(1-t^{\mathsf{b}})}$$
 where

h = Coxeter number of the corresponding finite root system

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

T. Springer (1987)

Thm. When $G \subset SU_2$ is finite and $V = \mathbb{C}^2$, then the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

$$\mathbf{s^0}(t) = rac{1+t^{\mathsf{h}}}{(1-t^{\mathsf{a}})(1-t^{\mathsf{b}})}$$
 where

h = Coxeter number of the corresponding finite root system

• $a = 2 \cdot \max{\dim(S_{\alpha})}_{\alpha \in \Gamma}$

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

T. Springer (1987)

Thm. When $G \subset SU_2$ is finite and $V = \mathbb{C}^2$, then the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

$$\mathbf{s^0}(t) = rac{1+t^{ ext{h}}}{(1-t^{ ext{a}})(1-t^{ ext{b}})}$$
 where

イロト イヨト イヨト イヨト 二日

99/184

- h = Coxeter number of the corresponding finite root system
- $a = 2 \cdot max\{dim(S_{\alpha})\}_{\alpha \in \Gamma}$
- ▶ b = h + 2 a.

G. Gonzalez-Sprinberg and J.L. Verdier (1983)

B. Kostant (1984)

T. Springer (1987)

Thm. When $G \subset SU_2$ is finite and $V = \mathbb{C}^2$, then the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

$$\mathbf{s^0}(t) = rac{1+t^{\mathsf{h}}}{(1-t^{\mathsf{a}})(1-t^{\mathsf{b}})}$$
 where

h = Coxeter number of the corresponding finite root system

•
$$a = 2 \cdot max\{dim(S_{\alpha})\}_{\alpha \in \Gamma}$$

Springer's proof uses Molien's formula

$$\mathsf{s}^\gamma(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, rac{\overline{\chi_\gamma(g)}}{\mathsf{det}_{\mathsf{V}}(\mathrm{I} - gt)}.$$

Poincaré series Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{v}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k}$$

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{0,\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)} dt^{k}$$

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)},$$

and the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k>0} V^{\otimes k}$ is

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)},$$

and the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{1 - t \, \chi_{\mathsf{V}}(g)}$$

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)},$$

and the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{1 - t \, \chi_{\mathsf{V}}(g)}$$

Compare with:

Thm. (Molien 1897) The Poincaré series for the multiplicity of S_{γ} in $S(V) = \bigoplus_{k \ge 0} S^k(V)$ is

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{S}}(t) = \sum_{k=0}^{\infty} \dim \mathsf{S}^{k}_{\boldsymbol{\gamma}}(\mathsf{V}) \, t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \, \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{\det_{\mathsf{V}}(\mathsf{I} - t \, g)},$$

the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k>0} S^k(V)$ is

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)},$$

and the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{1 - t \, \chi_{\mathsf{V}}(g)}$$

Compare with:

Thm. (Molien 1897) The Poincaré series for the multiplicity of S_{γ} in $S(V) = \bigoplus_{k \ge 0} S^k(V)$ is

$$\mathsf{P}^{\gamma}_{\mathsf{S}}(t) = \sum_{k=0}^{\infty} \dim \mathsf{S}^{k}_{\boldsymbol{\gamma}}(\mathsf{V}) \, t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{\det_{\mathsf{V}}(I - t\,g)},$$

the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k \ge 0} S^k(V)$ is

$$\mathsf{P}^{\mathsf{0}}_{\mathsf{S}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{\det_{\mathsf{V}}(\mathsf{I} - t\,g)}$$

107/184

Thm. (B.-Moon 2016) Assume G, V, A as usual. Then

$$\mathsf{P}^{\boldsymbol{\gamma}}_{\mathsf{T}}(t) = \sum_{k=0}^{\infty} \left(\mathsf{A}^{k}\right)_{\mathbf{0},\boldsymbol{\gamma}} t^{k} = |\mathsf{G}|^{-1} \sum_{k=0}^{\infty} \left(\sum_{g \in \mathsf{G}} \chi_{\mathsf{V}}(g)^{k} \, \overline{\chi_{\boldsymbol{\gamma}}(g)}\right) t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{1 - t \, \chi_{\mathsf{V}}(g)},$$

and the Poincaré series for the G-invariants $T(V)^G$ in $T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{T}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{1 - t \, \chi_{\mathsf{V}}(g)}$$

Compare with:

Thm. (Molien 1897) The Poincaré series for the multiplicity of S_{γ} in $S(V) = \bigoplus_{k \ge 0} S^k(V)$ is

$$\mathsf{P}^{\gamma}_{\mathsf{S}}(t) = \sum_{k=0}^{\infty} \dim \mathsf{S}^{k}_{\boldsymbol{\gamma}}(\mathsf{V}) \, t^{k} = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{\overline{\chi_{\boldsymbol{\gamma}}(g)}}{\det_{\mathsf{V}}(I - t\,g)},$$

the Poincaré series for the G-invariants $S(V)^G$ in $S(V) = \bigoplus_{k \ge 0} S^k(V)$ is

$$\mathsf{P}^{\mathbf{0}}_{\mathsf{S}}(t) = |\mathsf{G}|^{-1} \sum_{g \in \mathsf{G}} \frac{1}{\det_{\mathsf{V}}(\mathsf{I} - t\,g)}$$

108/184
A dynamical view of group walking – Chip firing

A dynamical view of group walking – Chip firing

Philadelphia Inquirer

"Eagles Fire Chip Kelly Amid Team's Lost Season"

Bak-Tang-Wiesenfeld sandpile model (1987)

Bak-Tang-Wiesenfeld sandpile model (1987) Used in modeling:

> avalanching dynamics of granular flow on a grid

- avalanching dynamics of granular flow on a grid
- traffic jams

- > avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets

- > avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets
- biological evolution

- avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets
- biological evolution
- distribution of galaxies

- avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets
- biological evolution
- distribution of galaxies
- neurological workings of the mind

- avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets
- biological evolution
- distribution of galaxies
- neurological workings of the mind
- energy minimization

- > avalanching dynamics of granular flow on a grid
- traffic jams
- financial markets
- biological evolution
- distribution of galaxies
- neurological workings of the mind
- energy minimization
- tropical curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ G group, $|G| < \infty$

- $\blacktriangleright \ G \ group, \ |G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_{v}

- $\blacktriangleright \ G \ group, \ |G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_{v}

- ▶ G group, $|G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_v
- ► A McKay matrix of M_V(G)

- G group, $|G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_v
- ► A McKay matrix of M_V(G)
- $\widehat{C} = dI A$ (McKay-Cartan matrix)

- G group, $|G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_v
- ► A McKay matrix of M_V(G)
- $\widehat{C} = dI A$ (McKay-Cartan matrix)
- ▶ χ_j $(j = 0, 1, ..., \ell)$ the characters of the simple G-modules

- ▶ G group, $|G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_v
- ► A McKay matrix of M_V(G)
- $\widehat{C} = dI A$ (McKay-Cartan matrix)
- ▶ χ_j $(j = 0, 1, ..., \ell)$ the characters of the simple G-modules

$$\mathsf{A}\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix} = \chi_{\mathbf{v}}(g)\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix}, \qquad \widehat{\mathsf{C}}\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix} = (\mathsf{d} - \chi_{\mathbf{v}}(g))\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix}$$

- ▶ G group, $|G| < \infty$
- ▶ V G-module of dimension d over \mathbb{C} with character χ_v
- ► A McKay matrix of M_V(G)
- $\widehat{C} = dI A$ (McKay-Cartan matrix)
- χ_j $(j = 0, 1, ..., \ell)$ the characters of the simple G-modules

$$\mathsf{A}\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix} = \chi_{\mathbf{v}}(g)\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix}, \qquad \widehat{\mathsf{C}}\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix} = (\mathsf{d} - \chi_{\mathbf{v}}(g))\begin{pmatrix}\chi_{0}(g)\\\chi_{1}(g)\\\vdots\\\chi_{\ell}(g)\end{pmatrix}$$

$$\underline{\mathbf{d}} := \begin{pmatrix} \mathsf{d}_0 = 1 \\ \mathsf{d}_1 \\ \vdots \\ \mathsf{d}_\ell \end{pmatrix} = \begin{pmatrix} \chi_0(e) \\ \chi_1(e) \\ \vdots \\ \chi_\ell(e) \end{pmatrix} \text{ is a null vector for } \widehat{\mathsf{C}}$$

joint with C. Klivans and V. Reiner (2016)

joint with C. Klivans and V. Reiner (2016)

Thm. Assume

A is a McKay matrix for some G and d-dimensional V.

- A is a McKay matrix for some G and d-dimensional V.
- $\widehat{C} = dI A$ (McKay-Cartan matrix).

- A is a McKay matrix for some G and d-dimensional V.
- $\widehat{C} = dI A$ (McKay-Cartan matrix).

Then

- A is a McKay matrix for some G and d-dimensional V.
- $\widehat{C} = dI A$ (McKay-Cartan matrix).

Then

 $C:=\widehat{C}\setminus\{Row_0,Column_0\}$ is an "avalanche-finite" matrix

- A is a McKay matrix for some G and d-dimensional V.
- $\widehat{C} = dI A$ (McKay-Cartan matrix).

Then

$$\begin{split} C &:= \widehat{C} \setminus \{Row_0, Column_0\} \text{ is an "avalanche-finite" matrix} \\ & (i.e. \ chip \ firing \ stabilizes) \ for \ all \ such \ G, V. \end{split}$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

(C is the Cartan matrix of finite type D_4)

^{145/184}

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

(C is the Cartan matrix of finite type D_4)

146/184

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

(C is the Cartan matrix of finite type D_4)

147/184

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \quad C = \widehat{C} \setminus \{Row_0, Column_0\} \text{ for } \widehat{C} \text{ of type } \widehat{D}_4$$

(C is the Cartan matrix of finite type D_4)

148/184

When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an <u>honest</u> Cartan matrix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an <u>honest</u> Cartan matrix

Even nicer things happen.

When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an <u>honest</u> Cartan matrix

Even nicer things happen.

E.g. A configuration <u>a</u> is recurrent if there is a burning configuration <u>b</u> so

$$\underline{a} + \underline{b} \xrightarrow{\text{fire}} \cdots \xrightarrow{\text{fire}} \underline{a}.$$

When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an honest Cartan matrix

Even nicer things happen.

.

E.g. A configuration <u>a</u> is recurrent if there is a burning configuration <u>b</u> so

$$\underline{a} + \underline{b} \xrightarrow{\text{fire}} \cdots \xrightarrow{\text{fire}} \underline{a}.$$

Thm [B.-Klivans-Reiner '16] If C an honest Cartan matrix, then

When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an honest Cartan matrix

Even nicer things happen.

.

E.g. A configuration <u>a</u> is recurrent if there is a burning configuration <u>b</u> so

$$a+b \xrightarrow{\text{fire}} \cdots \xrightarrow{\text{fire}} a.$$

Thm [B.-Klivans-Reiner '16] If C an honest Cartan matrix, then

The burning configurations are the nonzero elements of the root lattice in the fundamental chamber. When $C = \widehat{C} \setminus \{Row_0, Column_0\}$ is an honest Cartan matrix

Even nicer things happen.

E.g. A configuration <u>a</u> is recurrent if there is a burning configuration <u>b</u> so

$$a+b \xrightarrow{fire} \cdots \xrightarrow{fire} a.$$

Thm [B.-Klivans-Reiner '16] If C an honest Cartan matrix, then

- The burning configurations are the nonzero elements of the root lattice in the fundamental chamber.
- The recurrent configurations are *ρ* (half-sum of the positive roots) and *ρ* λ_i, for λ_i a minuscule weight.

2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here

Here

(a) H is a finite-dim'l Hopf algebra over an algebraically closed field of char. $p \ge 0;$

Here

- (a) H is a finite-dim'l Hopf algebra over an algebraically closed field of char. $\rho \ge 0;$
- (b) V is a d-dim'l module for H such that each simple H-module S_j (j = 0, 1, ... ℓ) occurs in some V^{⊗k};

Here

- (a) H is a finite-dim'l Hopf algebra over an algebraically closed field of char. $\rho \ge 0$;
- (b) V is a d-dim'l module for H such that each simple H-module S_j (j = 0, 1, ... ℓ) occurs in some V^{⊗k};
- (c) Grothendieck group $G_0(H) \cong \mathbb{Z}^{\ell+1}$ has \mathbb{Z} -basis $[S_j]$ $(j = 0, 1, \dots \ell)$ and the H-module sequences

$$0 \longrightarrow \mathsf{M} \longrightarrow \mathsf{P} \longrightarrow \mathsf{N} \longrightarrow 0$$

give relations [P] = [M] + [N].

Here

- (a) H is a finite-dim'l Hopf algebra over an algebraically closed field of char. $\rho \ge 0;$
- (b) V is a d-dim'l module for H such that each simple H-module S_j (j = 0, 1, ... ℓ) occurs in some V^{⊗k};
- (c) Grothendieck group $G_0(H) \cong \mathbb{Z}^{\ell+1}$ has \mathbb{Z} -basis $[S_j]$ $(j = 0, 1, \dots \ell)$ and the H-module sequences

$$0 \longrightarrow \mathsf{M} \longrightarrow \mathsf{P} \longrightarrow \mathsf{N} \longrightarrow 0$$

give relations [P] = [M] + [N].

(d) $[N] = \sum_{j=0}^{\ell} [N : S_j] [S_j]$ and $[M] \cdot [N] = [M \otimes N]$

Here

- (a) H is a finite-dim'l Hopf algebra over an algebraically closed field of char. $\rho \ge 0$;
- (b) V is a d-dim'l module for H such that each simple H-module S_j (j = 0, 1, ... ℓ) occurs in some V^{⊗k};
- (c) Grothendieck group $G_0(H) \cong \mathbb{Z}^{\ell+1}$ has \mathbb{Z} -basis $[S_j]$ $(j = 0, 1, \dots \ell)$ and the H-module sequences

$$0 \longrightarrow \mathsf{M} \longrightarrow \mathsf{P} \longrightarrow \mathsf{N} \longrightarrow 0$$

give relations [P] = [M] + [N].

- (d) $[N] = \sum_{j=0}^{\ell} [N : S_j] [S_j]$ and $[M] \cdot [N] = [M \otimes N]$
- (e) For V, let $A_{i,j} := [S_j \otimes V, S_i]$, and set $A = (A_{i,j})$.
- (f) Let $\widehat{C} = dI A$.

C := C \ {Row_ε, Column_ε} is an avalanche-finite matrix, where ε is the counit of H giving the trivial H-module.

- C := C \ {Row_ε, Column_ε} is an avalanche-finite matrix, where ε is the counit of H giving the trivial H-module.
- Let P₀, P₁,..., P_ℓ be the indecomposable projective modules for H and set p = (dim P₀, dim P₁,..., dim P_ℓ). Then

 $A \mathbf{p}^{\mathsf{T}} = d \mathbf{p}^{\mathsf{T}}$ and $\widehat{C} \mathbf{p}^{\mathsf{T}} = \mathbf{0}$.

- C := C \ {Row_ε, Column_ε} is an avalanche-finite matrix, where ε is the counit of H giving the trivial H-module.
- Let P₀, P₁,..., P_ℓ be the indecomposable projective modules for H and set p = (dim P₀, dim P₁,..., dim P_ℓ). Then

$$A \mathbf{p}^{\mathsf{T}} = d \mathbf{p}^{\mathsf{T}}$$
 and $\widehat{C} \mathbf{p}^{\mathsf{T}} = \mathbf{0}$.

• If $\mathbf{s} = (\dim S_0, \dim S_1, \dots, \dim S_\ell)$, and

$$\mathbf{s} \mathbf{A} = \mathbf{d} \, \mathbf{s}$$
 and $\mathbf{s} \, \widehat{\mathbf{C}} = \mathbf{0}$.

- C := C \ {Row_ε, Column_ε} is an avalanche-finite matrix, where ε is the counit of H giving the trivial H-module.
- Let P₀, P₁,..., P_ℓ be the indecomposable projective modules for H and set p = (dim P₀, dim P₁,..., dim P_ℓ). Then

$$A \mathbf{p}^{\mathsf{T}} = d \mathbf{p}^{\mathsf{T}}$$
 and $\widehat{C} \mathbf{p}^{\mathsf{T}} = \mathbf{0}$.

• If $\mathbf{s} = (\dim S_0, \dim S_1, \dots, \dim S_\ell)$, and

$$\mathbf{s} \mathbf{A} = \mathbf{d} \mathbf{s}$$
 and $\mathbf{s} \widehat{\mathbf{C}} = \mathbf{0}$.

And there are a lot of other beautiful results related to Brauer characters, chip firing, Cartan matrices (in the modular group theory sense), critical groups, etc.

 $\mathfrak{g} := \mathfrak{sl}_2$ over an algebraically closed field K of characteristic $p \geq 5$,

 $\mathfrak{g} := \mathfrak{sl}_2$ over an algebraically closed field K of characteristic $p \geq 5$,

 $H := u(\mathfrak{g})$ restricted enveloping algebra - a finite-dim'l Hopf algebra

 $\mathfrak{g} := \mathfrak{sl}_2$ over an algebraically closed field K of characteristic $p \ge 5$, H := u(\mathfrak{g}) restricted enveloping algebra - a finite-dim'l Hopf algebra Simple H-modules \mathbf{S}_r , r = 0, 1, ..., p - 1, dim $\mathbf{S}_r = r + 1$.

 $\mathfrak{g} := \mathfrak{sl}_2$ over an algebraically closed field K of characteristic $p \ge 5$, H := u(\mathfrak{g}) restricted enveloping algebra - a finite-dim'l Hopf algebra Simple H-modules \mathbf{S}_r , r = 0, 1, ..., p - 1, dim $\mathbf{S}_r = r + 1$.

Projective indecomposable H-modules P_r , r = 0, 1, ..., p - 1:

 $\mathfrak{g} := \mathfrak{sl}_2$ over an algebraically closed field K of characteristic $p \ge 5$, H := u(\mathfrak{g}) restricted enveloping algebra - a finite-dim'l Hopf algebra Simple H-modules S_r , $r = 0, 1, \dots, p - 1$, dim $S_r = r + 1$. Projective indecomposable H-modules P_r , $r = 0, 1, \dots, p - 1$: When $0 \le r \le p - 2$, the module P_r has the following structure:

 $P_{p-1} = S_{p-1}$, the Steinberg module.

< □ > < 部 > < 言 > < 言 > 三 の Q (~ 173/184 Tensoring Set $V = S_1$ (the natural 2-dimensional module for g).

Set $V = S_1$ (the natural 2-dimensional module for g). Tensor product rules (B.-Osborn '82):

$$\begin{split} & \mathbf{S}_r \otimes \mathbf{S}_1 = \mathbf{S}_{r+1} \oplus \mathbf{S}_{r-1} \quad \text{for } \mathbf{0} \le r \le p-2 \\ & \mathbf{S}_{p-1} \otimes \mathbf{S}_1 = \mathbf{P}_{p-2}, \quad \text{so} \\ & \mathbf{s} = [1, 2, \dots, p], \quad \mathbf{p} = [2p, 2p, \dots, 2p, p] \quad \text{and} \end{split}$$

Set $V = S_1$ (the natural 2-dimensional module for g). Tensor product rules (B.-Osborn '82):

$$S_{r} \otimes S_{1} = S_{r+1} \oplus S_{r-1} \text{ for } 0 \le r \le p-2$$

$$S_{p-1} \otimes S_{1} = P_{p-2}, \text{ so}$$

$$\mathbf{s} = [1, 2, \dots, p], \quad \mathbf{p} = [2p, 2p, \dots, 2p, p] \text{ and}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 2\\ 1 & 0 & 1 & \cdots & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & \cdots & 0 & 0\\ 0 & 1 & 0 & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \dots & 0 & 1 & 0\\ 0 & 0 & 0 & \dots & 1 & 0 & 2\\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{s} \mathbf{A} = 2\mathbf{s} \text{ and } \mathbf{A} \mathbf{p}^{\mathsf{T}} = 2\mathbf{p}^{\mathsf{T}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Set $V = S_1$ (the natural 2-dimensional module for g). Tensor product rules (B.-Osborn '82):

$$S_{r} \otimes S_{1} = S_{r+1} \oplus S_{r-1} \text{ for } 0 \le r \le p-2$$

$$S_{p-1} \otimes S_{1} = P_{p-2}, \quad \text{so}$$

$$\mathbf{s} = [1, 2, \dots, p], \quad \mathbf{p} = [2p, 2p, \dots, 2p, p] \quad \text{and}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 2\\ 1 & 0 & 1 & \cdots & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & \cdots & 0 & 0\\ 0 & 1 & 0 & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \dots & 0 & 1 & 0\\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{s} \mathbf{A} = 2\mathbf{s} \quad \text{and} \quad \mathbf{A} \mathbf{p}^{\mathsf{T}} = 2\mathbf{p}^{\mathsf{T}}$$

Remark There is an analog of this for the "restricted" quantum group $u_{\xi}(\mathfrak{g})$ for an ℓ th root of unity ξ , ℓ odd, and $K = \mathbb{C}$. Calculations are basically the same - just replace p by ℓ . (See Chari-Premet '94)

Thanks

Thanks - with multiplicity

Thanks - with multiplicity !

Thanks - with multiplicity !!

Thanks - with multiplicity !!!

Thanks - with multiplicity !!!!

Thanks - with multiplicity !!!!!